【題目】選修4—4:極坐標(biāo)與參數(shù)方程
在平面直角坐標(biāo)系
中,將曲線
(
為參數(shù)) 上任意一點(diǎn)
經(jīng)過伸縮變換
后得到曲線
的圖形.以坐標(biāo)原點(diǎn)
為極點(diǎn),x軸的非負(fù)半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線
.
(Ⅰ)求曲線
和直線
的普通方程;
(Ⅱ)點(diǎn)P為曲線
上的任意一點(diǎn),求點(diǎn)P到直線
的距離的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).
【答案】(1)
,
(2)
,P![]()
【解析】試題分析:(I)根據(jù)伸縮變換的公式代入原方程,可以得到伸縮后的曲線方程;
(II)利用點(diǎn)P在橢圓上設(shè)出參數(shù)坐標(biāo),根據(jù)點(diǎn)到直線的距離公式求三角函數(shù)的最值,并求出取得最值時(shí)的
值.
試題解析:(I)由已知有
(
為參數(shù)),消去
得
.
將
代入直線
的方程得![]()
曲線
的方程為
,直線
的普通方程為
.
(II)由(I)可設(shè)點(diǎn)
為
,
.則點(diǎn)
到直線
的距離為:
![]()
故當(dāng)
,即
時(shí)
取最大值
.
span>此時(shí)點(diǎn)
的坐標(biāo)為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,
平面ABCD,四邊形ABCD是正方形,PA=AD=2,點(diǎn)E、F、G分別為線段PA、PD和CD的中點(diǎn).
![]()
(1)求異面直線EG與BD所成角的大;
(2)在線段CD上是否存在一點(diǎn)Q,使得點(diǎn)A到平面EFQ的距離恰為
?若存在,求出線段CQ的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某超市,隨機(jī)調(diào)查了100名顧客購物時(shí)使用手機(jī)支付的情況,得到如下的
列聯(lián)表,已知其中從使用手機(jī)支付的人群中隨機(jī)抽取1人,抽到青年的概率為
.
(1)根據(jù)已知條件完成
列聯(lián)表,并根據(jù)此資料判斷是否有
的把握認(rèn)為“超市購物用手機(jī)支付與年齡有關(guān)”?
(2)現(xiàn)采用分層抽樣從這100名顧客中按照“使用手機(jī)支付”和“不使用手機(jī)支付”中抽取得到一個(gè)容量為5的樣本,設(shè)事件
為“從這個(gè)樣本中任選3人,這3人中至少有2人是使用手機(jī)支付的”,求事件
發(fā)生的概率?
列聯(lián)表
青年 | 中老年 | 合計(jì) | |
使用手機(jī)支付 | 60 | ||
不使用手機(jī)支付 | 28 | ||
合計(jì) | 100 |
|
|
|
|
| 0.001 |
|
|
|
|
| 10.828 |
附:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若曲線
與直線
滿足:①
與
在某點(diǎn)
處相切;②曲線
在
附近位于直線
的異側(cè),則稱曲線
與直線
“切過”.下列曲線和直線中,“切過”的有________.(填寫相應(yīng)的編號)
①
與
②
與
③
與
④
與
⑤
與![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,人們對食品安全越來越重視,有機(jī)蔬菜的需求也越來越大,國家也制定出臺了一系列支持有機(jī)肥產(chǎn)業(yè)發(fā)展的優(yōu)惠政策,鼓勵(lì)和引導(dǎo)農(nóng)民增施有機(jī)肥,“藏糧于地,藏糧于技”.根據(jù)某種植基地對某種有機(jī)蔬菜產(chǎn)量與有機(jī)肥用量的統(tǒng)計(jì),每個(gè)有機(jī)蔬菜大棚產(chǎn)量的增加量
(百斤)與使用有機(jī)肥料
(千克)之間對應(yīng)數(shù)據(jù)如下表:
使用有機(jī)肥料 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
產(chǎn)量增加量 | 2.1 | 2.9 | 3.5 | 4.2 | 4.8 | 5.6 | 6.2 | 6.7 |
(1)根據(jù)表中的數(shù)據(jù),試建立
關(guān)于
的線性回歸方程
(精確到
);
(2) 若種植基地每天早上7點(diǎn)將采摘的某有機(jī)蔬菜以每千克10元的價(jià)格銷售到某超市,超市以每千克15元的價(jià)格賣給顧客.已知該超市每天8點(diǎn)開始營業(yè),22點(diǎn)結(jié)束營業(yè),超市規(guī)定:如果當(dāng)天16點(diǎn)前該有機(jī)蔬菜沒賣完,則以每千克5元的促銷價(jià)格賣給顧客(根據(jù)經(jīng)驗(yàn),當(dāng)天都能全部賣完).該超市統(tǒng)計(jì)了100天該有機(jī)蔬菜在每天的16點(diǎn)前的銷售量(單位:千克),如表:
每天16點(diǎn)前的 銷售量(單位:千克) | 100 | 110 | 120 | 130 | 140 | 150 | 160 |
頻數(shù) | 10 | 20 | 16 | 16 | 14 | 14 | 10 |
若以100天記錄的頻率作為每天16點(diǎn)前銷售量發(fā)生的概率,以該超市當(dāng)天銷售該有機(jī)蔬菜利潤的期望值為決策依據(jù),說明該超市選擇購進(jìn)該有機(jī)蔬菜110千克還是120千克,能使獲得的利潤更大?
附:回歸直線方程
中的斜率和截距的最小二乘估計(jì)公式分別為:
,
.
參考數(shù)據(jù):
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(1)若關(guān)于
的不等式
的解集為
,求實(shí)數(shù)
的值;
(2)設(shè)
,若不等式
對任意實(shí)數(shù)
都成立,求實(shí)數(shù)
的取值范圍;
(3)設(shè)
,解關(guān)于
的不等式組![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)棱長為
的正方體的表面涂上顏色,將其適當(dāng)分割成棱長為
的小正方體,全部放入不透明的口袋中,攪拌均勻后,從中任取一個(gè),取出的小正方體表面僅有一個(gè)面涂有顏色的概率是()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如下四個(gè)命題:①在線性回歸模型中,相關(guān)指數(shù)
表示解釋變量
對于預(yù)報(bào)變量
的貢獻(xiàn)率,
越接近于
,表示回歸效果越好;②在回歸直線方程
中,當(dāng)解釋變量
每增加一個(gè)單位時(shí),預(yù)報(bào)變量
平均增加
個(gè)單位;③兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值就越接近于
;④對分類變量
與
,對它們的隨機(jī)變量
的觀測值
來說,
越小,則“
與
有關(guān)系”的把握程度越大.其中正確命題的序號是__________.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com