【題目】已知
,函數(shù)
(
是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若
,證明:曲線
沒(méi)有經(jīng)過(guò)點(diǎn)
的切線;
(Ⅱ)若函數(shù)
在其定義域上不單調(diào),求
的取值范圍;
【答案】(Ⅰ)見解析(Ⅱ)![]()
【解析】
(Ⅰ)假設(shè)存在切線經(jīng)過(guò)
,設(shè)切點(diǎn)為
,利用切線方程推出矛盾得到證明.
(Ⅱ)函數(shù)
在其定義域上不單調(diào),等價(jià)于
有變號(hào)零點(diǎn),取導(dǎo)數(shù)為0,參數(shù)分離,設(shè)新函數(shù)利用函數(shù)的單調(diào)性求取值范圍.
解:(Ⅰ)因?yàn)?/span>
,所以
,此時(shí)
,
設(shè)曲線
在點(diǎn)
處的切線經(jīng)過(guò)點(diǎn)![]()
則曲線
在點(diǎn)
處的切線![]()
所以
化簡(jiǎn)得:![]()
令
,則
,
所以當(dāng)
時(shí),
,
為減函數(shù),
當(dāng)
時(shí),
,
為增函數(shù),
所以
,所以
無(wú)解
所以曲線
的切線都不經(jīng)過(guò)點(diǎn)![]()
(Ⅱ)函數(shù)的定義域?yàn)?/span>
,因?yàn)?/span>
,
所以
在定義域上不單調(diào),等價(jià)于
有變號(hào)零點(diǎn),
令
,得
,令
.
因?yàn)?/span>
,令
,
,
所以
是
上的減函數(shù),又
,故1是
的唯一零點(diǎn),
當(dāng)
,
,
,
遞增;
當(dāng)
,
,
,
遞減;
故當(dāng)
時(shí),
取得極大值且為最大值
,所以
,即
的取值范圍是![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)討論
的單調(diào)性;
(2)用
表示
中的最大值,設(shè)函數(shù)
,討論
零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4 — 4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
(
).
(1)分別寫出直線
的普通方程與曲線
的直角坐標(biāo)方程;
(2)已知點(diǎn)
,直線
與曲線
相交于
兩點(diǎn),若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】疫情期間,一同學(xué)通過(guò)網(wǎng)絡(luò)平臺(tái)聽網(wǎng)課,在家堅(jiān)持學(xué)習(xí).某天上午安排了四節(jié)網(wǎng)課,分別是數(shù)學(xué),語(yǔ)文,政治,地理,下午安排了三節(jié),分別是英語(yǔ),歷史,體育.現(xiàn)在,他準(zhǔn)備在上午下午的課程中各任選一節(jié)進(jìn)行打卡,則選中的兩節(jié)課中至少有一節(jié)文綜學(xué)科(政治、歷史、地理)課程的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】目前有聲書正受著越來(lái)越多人的喜愛.某有聲書公司為了解用戶使用情況,隨機(jī)選取了
名用戶,統(tǒng)計(jì)出年齡分布和用戶付費(fèi)金額(金額為整數(shù))情況如下圖.
![]()
有聲書公司將付費(fèi)高于
元的用戶定義為“愛付費(fèi)用戶”,將年齡在
歲及以下的用戶定義為“年輕用戶”.已知抽取的樣本中有
的“年輕用戶”是“愛付費(fèi)用戶”.
(1)完成下面的
列聯(lián)表,并據(jù)此資料,能否有
的把握認(rèn)為用戶“愛付費(fèi)”與其為“年輕用戶”有關(guān)?
愛付費(fèi)用戶 | 不愛付費(fèi)用戶 | 合計(jì) | |
年輕用戶 | |||
非年輕用戶 | |||
合計(jì) |
(2)若公司采用分層抽樣方法從“愛付費(fèi)用戶”中隨機(jī)選取
人,再?gòu)倪@
人中隨機(jī)抽取
人進(jìn)行訪談,求抽取的
人恰好都是“年輕用戶”的概率.
|
|
|
|
|
|
|
|
|
|
|
|
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
在極坐標(biāo)系下,已知圓O:
和直線![]()
(1)求圓O和直線l的直角坐標(biāo)方程;
(2)當(dāng)
時(shí),求直線l與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
(1)當(dāng)
時(shí),設(shè)
,討論
的導(dǎo)函數(shù)
的單調(diào)性;
(2)當(dāng)
時(shí),
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
為圓
上一動(dòng)點(diǎn),
在
軸,
軸上的射影分別為點(diǎn)
,
,動(dòng)點(diǎn)
滿足
,記動(dòng)點(diǎn)
的軌跡為曲線
.
(1)求曲線
的方程;
(2)過(guò)點(diǎn)
的直線與曲線
交于
,
兩點(diǎn),判斷以
為直徑的圓是否過(guò)定點(diǎn)?求出定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若
恒成立,求實(shí)數(shù)
的最大值
;
(2)在(1)成立的條件下,正實(shí)數(shù)
,
滿足
,證明:
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com