【題目】如圖是甲、乙兩名運動員某賽季一些場次得分的莖葉圖,據(jù)圖可知以下說法正確的是 _____.(填序號)
![]()
①甲運動員的成績好于乙運動員;②乙運動員的成績好于甲運動員;
③甲、乙兩名運動員的成績沒有明顯的差異;④甲運動員的最低得分為0分.
【答案】①
【解析】
本題考查的知識點是莖葉圖,及平均數(shù)的概念,由莖葉圖中分析出甲、乙兩名籃球運動員某賽季各場次得分,再由平均數(shù)定義進(jìn)行判斷,易得結(jié)果.
分析莖葉圖可得:
甲運動員的得分為:10,15,22,23,31,32,34,36,37,38,44,44,49,51
乙運動員的得分為:8,12,14,17,21,29,29,33,36,52
則甲運動員得分的平均數(shù)為
(10+15+22+23+31+32+34+36+37+38+44+44+49+51)=38,
乙運動員得分的平均數(shù)為
(8+12+14+17+21+29+29+33+36+52)=37.
甲運動員的最低得分為10分.
故答案為:①.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx,g(x)=
ax2+bx,a≠0.
(Ⅰ)若b=2,且h(x)=f(x)﹣g(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(Ⅱ)設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)圖象C2交于點P、Q,過線段PQ的中點作x軸的垂線分別交C1 , C2于點M、N,證明C1在點M處的切線與C2在點N處的切線不平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分別求適合下列條件的橢圓的標(biāo)準(zhǔn)方程.
(1)焦點在坐標(biāo)軸上,且經(jīng)過點A (
,-2),B(-2
,1);
(2)與橢圓
有相同焦點且經(jīng)過點M(
,1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,角A,B,C的對邊分別為a,b,c,a=b(sinC+cosC).
(Ⅰ)求∠ABC;
(Ⅱ)若∠A=
,D為△ABC外一點,DB=2,DC=1,求四邊形ABDC面積的最大值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在實數(shù)集R上定義一種運算“*”,對于任意給定的a、b∈R,a*b為唯一確定的實數(shù),且具有性質(zhì):
1)對任意a、b∈R,a*b=b*a;
2)對任意a、b∈R,a*0=a;
3)對任意a、b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)﹣2c.
關(guān)于函數(shù)f(x)=x*
的性質(zhì),有如下說法:
①在(0,+∞)上函數(shù)f(x)的最小值為3;
②函數(shù)f(x)為奇函數(shù);
③函數(shù)f(x)的單調(diào)遞增區(qū)間為(﹣∞,﹣1),(1,+∞).
其中所有正確說法的個數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行圍棋比賽,約定每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一人比對方多2分或打滿8局時停止.設(shè)甲在每局中獲勝的概率為
,且各局勝負(fù)相互獨立.已知第二局比賽結(jié)束時比賽停止的概率為
.
(1)求
的值;
(2)設(shè)
表示比賽停止時已比賽的局?jǐn)?shù),求隨機(jī)變量
的分布列和數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面有五個命題:
①函數(shù)y=sin4x-cos4x的最小正周期是
;
②終邊在y軸上的角的集合是{α|α=
;
③在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個公共點;
④把函數(shù)
;
⑤函數(shù)
。
其中真命題的序號是__________(寫出所有真命題的編號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓
,過點
,離心率為
,左、右焦點分別為
、
.點
為直線
上且不在
軸上的任意一點,直線
和
與橢圓的交點分別為
、
和
、
,
為坐標(biāo)原點.
![]()
(
)求橢圓的標(biāo)準(zhǔn)方程;
(
)設(shè)直線
、
斜率分別為
、
.
①證明:
;
②問直線
上是否存在一點
,使直線
、
、
、
的斜率
、
、
、
滿足
?若存在,求出所有滿足條件的點
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com