【題目】某公司為了促進(jìn)某產(chǎn)品的銷售,隨機調(diào)查了該產(chǎn)品的月銷售單價x(單位:元/件)及相應(yīng)月銷量y(單位:萬件),對近5個月的月銷售單價
和月銷售量
的數(shù)據(jù)進(jìn)行了統(tǒng)計,得到如下數(shù)表:
月銷售單價 | 8 | 8.5 | 9 | 9.5 | 10 |
月銷售量 | 11 | 10 | 8 | 6 | 5 |
(1)建立
關(guān)于
的回歸直線方程;
(2)該公司年底開展促銷活動,當(dāng)月銷售單價為7元/件時,其月銷售量達(dá)到14.8萬件,若由回歸直線方程得到的預(yù)測數(shù)據(jù)與此次促銷活動的實際數(shù)據(jù)之差的絕對值不超過0.5萬件,則認(rèn)為所得到的回歸直線方程是理想的,試問(1)中得到的回歸直線方程是否理想?
(3)根據(jù)(1)的結(jié)果,若該產(chǎn)品成本是5元/件,月銷售單價
為何值時,公司月利潤的預(yù)報值最大?(注:利潤=銷售收入-成本).
參考公式:回歸直線方程
,其中
,![]()
參考數(shù)據(jù):
,![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一塊三角形邊角地,如圖
,
,
,
.(單位為百米).欲利用這塊地修一個三角形形狀的草坪(圖中
)供市民休閑,其中點
在邊
上,點
在邊
上,沿
的三邊修建休閑長廊,規(guī)劃部門要求
的面積占
面積的一半,設(shè)
(百米),
的周長為
(百米)
![]()
(1)求出
函數(shù)的解析式及定義域
(2)求出休閑長廊總長度
的取值范圍,并確定當(dāng)
取到最大值時點
,
的位置
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2014年7月18日15時,超強臺風(fēng)“威馬遜”登陸海南。畵(jù)統(tǒng)計,本次臺風(fēng)造成全省直接經(jīng)濟損失119.52億元.適逢暑假,小明調(diào)查住在自己小區(qū)的50戶居民由于臺風(fēng)造成的經(jīng)濟損失,作出如下頻率分布直方圖:
![]()
經(jīng)濟損失 4000元以下 | 經(jīng)濟損失 4000元以上 | 合計 | |
捐款超過500元 | 30 | ||
捐款低于500元 | 6 | ||
合計 |
(1)臺風(fēng)后區(qū)委會號召小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如上表,在表格空白處填寫正確數(shù)字,并說明是否有
以上的把握認(rèn)為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟損失是否到4000元有關(guān)?
(2)臺風(fēng)造成了小區(qū)多戶居民門窗損壞,若小區(qū)所有居民的門窗均由李師傅和張師傅兩人進(jìn)行維修,李師傅每天早上在7:00到8:00之間的任意時刻來到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時刻來到小區(qū),求連續(xù)3天內(nèi),李師傅比張師傅早到小區(qū)的天數(shù)的數(shù)學(xué)期望.
附:臨界值表
![]()
參考公式:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
,
是兩條不同的直線,
,
,
是三個不同的平面,給出下列四個命題:
①若
,
,則![]()
②若
,
,
,則![]()
③若
,
,則![]()
④若
,
,則![]()
其中正確命題的序號是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點
,點
,點
,動圓
與
軸相切于點
,過點
的直線
與圓
相切于點
,過點
的直線
與圓
相切于點
(
均不同于點
),且
與
交于點
,設(shè)點
的軌跡為曲線
.
(1)證明:
為定值,并求
的方程;
(2)設(shè)直線
與
的另一個交點為
,直線
與
交于
兩點,當(dāng)
三點共線時,求四邊形
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合
,若對于任意實數(shù)對
,存在
,使
成立,則稱集合
是“垂直對點集” .給出下列四個集合:
①
;
②
;
③
;
④
.
其中是“垂直對點集”的序號是( ).
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時,求函數(shù)
在區(qū)間
上的值域.
(2)對于任意
,都有
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線![]()
的左右焦點分別為
,過
的直線分別交雙曲線左右兩支于點M,N.若以MN為直徑的圓經(jīng)過點
且
,則雙曲線的離心率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三個校區(qū)分別位于扇形OAB的三個頂點上,點Q是弧AB的中點,現(xiàn)欲在線段OQ上找一處開挖工作坑P(不與點O,Q重合),為小區(qū)鋪設(shè)三條地下電纜管線PO,PA,PB,已知OA=2千米,∠AOB=
,記∠APQ=θrad,地下電纜管線的總長度為y千米.
(1)將y表示成θ的函數(shù),并寫出θ的范圍;
(2)請確定工作坑P的位置,使地下電纜管線的總長度最小.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com