【題目】已知函數(shù)f(x)=2sinxcosx+2
cos2x﹣ ![]()
(1)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間;
(2)已知△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,其中a=7,若銳角A滿足f(
﹣
)=
,且sinB+sinC=
,求bc的值.
【答案】
(1)解:f(x)=2sinxcosx+2
cos2x﹣
=sin2x+
cos2x=2sin(2x+
),
∵ω=2,∴f(x)的最小正周期T=π,
∵2kπ+
≤2x+
≤2kπ+
,k∈Z,
∴f(x)的單調(diào)減區(qū)間為[kπ+
,kπ+
],k∈Z
(2)解:由f(
﹣
)=2sin[2(
﹣
)+
]=2sinA=
,即sinA=
,
∵A為銳角,∴A=
,
由正弦定理可得2R=
=
=
,sinB+sinC=
=
,
∴b+c=
×
=13,
由余弦定理可知:cosA=
=
=
,
整理得:bc=40
【解析】(1)f(x)解析式利用二倍角正弦、余弦函數(shù)公式化簡,再利用兩角和與差的正弦函數(shù)公式化為一個角的正弦函數(shù),找出ω的值,代入周期公式求出最小正周期,由正弦函數(shù)的單調(diào)性確定出f(x)的單調(diào)遞減區(qū)間即可;(2)由f(x)解析式,以及f(
﹣
)=
,求出A的度數(shù),將sinB+sinC=
,利用正弦定理化簡,求出bc的值即可.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明跟父母、爺爺奶奶一同參加《中國詩詞大會》的現(xiàn)場錄制,5人坐成一排.若小明的父母至少有一人與他相鄰,則不同坐法的總數(shù)為
A. 60 B. 72 C. 84 D. 96
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列
滿足
,
.
(1)設(shè)
,求數(shù)列
的通項(xiàng)公式;
(2)設(shè)
,求數(shù)列
的前n項(xiàng)和為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,
,
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當(dāng)
時,討論函數(shù)
與
圖像的交點(diǎn)個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在坐標(biāo)原點(diǎn)、焦點(diǎn)在x軸上的橢圓,它的離心率為
,且與直線x+y-1=0相交于M、N兩點(diǎn),若以MN為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為
,現(xiàn)有甲,乙二人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到兩人中有一人取到白球即終止,每個球在每一次被取出的機(jī)會是等可能的.
(Ⅰ)求袋中原有白球的個數(shù):
(Ⅱ)求取球次數(shù)
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:任意兩個等邊三角形都是相似的.
①它的否定是_________________________________________________________;
②否命題是_____________________________________________________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究學(xué)生的數(shù)學(xué)核素養(yǎng)與抽象(能力指標(biāo)
)、推理(能力指標(biāo)
)、建模(能力指標(biāo)
)的相關(guān)性,并將它們各自量化為1、2、3三個等級,再用綜合指標(biāo)
的值評定學(xué)生的數(shù)學(xué)核心素養(yǎng);若
,則數(shù)學(xué)核心素養(yǎng)為一級;若
,則數(shù)學(xué)核心素養(yǎng)為二級;若
,則數(shù)學(xué)核心素養(yǎng)為三級,為了了解某校學(xué)生的數(shù)學(xué)核素養(yǎng),調(diào)查人員隨機(jī)訪問了某校10名學(xué)生,得到如下結(jié)果:
學(xué)生編號 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)在這10名學(xué)生中任取兩人,求這兩人的建模能力指標(biāo)相同的概率;
(2)從數(shù)學(xué)核心素養(yǎng)等級是一級的學(xué)生中任取一人,其綜合指標(biāo)為
,從數(shù)學(xué)核心素養(yǎng)等級不是一級的學(xué)生中任取一人,其綜合指標(biāo)為
,記隨機(jī)變量
,求隨機(jī)變量
的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對同一類的
,
,
,
四項(xiàng)參賽作品,只評一項(xiàng)一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項(xiàng)參賽作品預(yù)測如下:
甲說:“是
或
作品獲得一等獎”;
乙說:“
作品獲得一等獎”;
丙說:“
,
兩項(xiàng)作品未獲得一等獎”;
丁說:“是
作品獲得一等獎”.
若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com