【題目】已知函數(shù)
,
.
(1)討論
的單調(diào)性;
(2)若
,證明:當(dāng)
時(shí),
.
【答案】(1)見解析(2)見解析
【解析】
(1)求函數(shù)導(dǎo)數(shù),討論a,根據(jù)導(dǎo)數(shù)的正負(fù)分析函數(shù)單調(diào)性即可;
(2)要證
在
上恒成立,即證明
,
在
上恒成立,設(shè)
,求函數(shù)導(dǎo)數(shù),利用單調(diào)性求最值證明即可.
(1)
當(dāng)
時(shí),![]()
當(dāng)
時(shí),
,
單調(diào)遞減,
當(dāng)
時(shí),
,
單調(diào)遞增,
所以
在
上單調(diào)遞減,在
上單調(diào)遞增.
當(dāng)
時(shí),令
得
(*)
因?yàn)?/span>
所以方程(*)有兩根,由求根公式得
,
.
當(dāng)
時(shí),
, 當(dāng)
或
時(shí),
,
單調(diào)遞減,
當(dāng)
時(shí),
,
單調(diào)遞增,
所以
在
和
上單調(diào)遞減,在
上單調(diào)遞增.
當(dāng)
時(shí),
, 當(dāng)
或
時(shí),
,
單調(diào)遞增,當(dāng)
時(shí),
,
單調(diào)遞減,
所以
在
和
上單調(diào)遞增,在
上單調(diào)遞減.
綜上所述,當(dāng)
時(shí),
在
上單調(diào)遞減,在
上單調(diào)遞增;
當(dāng)
時(shí),
在
和
上單調(diào)遞減,在
上單調(diào)遞增;
當(dāng)
時(shí),
在
和
上單調(diào)遞增,在
上單調(diào)遞減.
(2)當(dāng)
時(shí),
,由題意知,要證
在
上恒成立,
即證明
,
在
上恒成立.
設(shè)
,則
,
因?yàn)?/span>
,所以
,
(當(dāng)且僅當(dāng)
時(shí)等號成立),
即
,
所以
在
上單調(diào)遞增,
,
所以
在
上恒成立.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為制定合理的節(jié)電方案,對居民用電情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年200戶居民每戶的月均用電量(單位:百度),將數(shù)據(jù)按照
,
,
分成
組,制成了如圖所示的頻率分布直方圖:
![]()
(I)求直方圖中
的值;
56789月均用電量百廈
(Ⅱ)設(shè)該市有100萬戶居民,估計(jì)全市每戶居民中月均用電量不低于6百度的人數(shù),估計(jì)每戶居民月均用電量的中位數(shù),說明理由;
(Ⅲ)政府計(jì)劃對月均用電量在4(百度)以下的用戶進(jìn)行獎勵(lì),月均用電量在
內(nèi)的用戶獎勵(lì)20元/月,月均用電量在
內(nèi)的用戶獎勵(lì)10元/月,月均用電量在
內(nèi)的用戶獎勵(lì)2元/月.若該市共有400萬戶居民,試估計(jì)政府執(zhí)行此計(jì)劃的年度預(yù)算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
,點(diǎn)
為橢圓上一點(diǎn),且
.
(1)求橢圓C的方程;
(2)已知兩條互相垂直的直線
,
經(jīng)過橢圓
的右焦點(diǎn)
,與橢圓
交于
四點(diǎn),求四邊形
面積的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某公司2001年至2017年新產(chǎn)品研發(fā)費(fèi)用
(單位:萬元)的折線圖.為了預(yù)測該公司2019年的新產(chǎn)品研發(fā)費(fèi)用,建立了
與時(shí)間變量
的兩個(gè)線性回歸模型.根據(jù)2001年至2017年的數(shù)據(jù)(時(shí)間變量
的值依次為1,2,…,17)建立模型①:
;根據(jù)2011年至2017年的數(shù)據(jù)(時(shí)間變量
的值依次為1,2,…,7)建立模型②:
.
![]()
(1)分別利用這兩個(gè)模型,求該公司2019年的新產(chǎn)品研發(fā)費(fèi)用的預(yù)測值;
(2)你認(rèn)為用哪個(gè)模型得到的預(yù)測值更可靠?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD﹣A1B1C1D1為正方體,則以下結(jié)論:①BD∥平面CB1D1;②AC1⊥BD;③AC1⊥平面CB1D1其中正確結(jié)論的個(gè)數(shù)是( 。
![]()
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體ABCDEF中,已知四邊形ABCD是邊長為1的正方形,且△ADE,△BCF均為正三角形,EF∥AB,EF=2,則該多面體的體積為( )
![]()
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在
上的函數(shù)
,若函數(shù)
滿足:①在區(qū)間
上單調(diào)遞減,②存在常數(shù)
,使其值域?yàn)?/span>
,則稱函數(shù)
是函數(shù)
的“漸近函數(shù)”.
(1)判斷函數(shù)
是不是函數(shù)
的“漸近函數(shù)”,說明理由;
(2)求證:函數(shù)
不是函數(shù)
的“漸近函數(shù)”;
(3)若函數(shù)
,
,求證:當(dāng)且僅當(dāng)
時(shí),
是
的“漸近函數(shù)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“雙十一”已經(jīng)成為網(wǎng)民們的網(wǎng)購狂歡節(jié),某電子商務(wù)平臺對某市的網(wǎng)民在今年“雙十一”的網(wǎng)購情況進(jìn)行摸底調(diào)查,用隨機(jī)抽樣的方法抽取了100人,其消費(fèi)金額
(百元)的頻率分布直方圖如圖所示:
(1)求網(wǎng)民消費(fèi)金額
的平均值和中位數(shù)
;
(2)把下表中空格里的數(shù)填上,能否有
的把握認(rèn)為網(wǎng)購消費(fèi)與性別有關(guān);
![]()
男 | 女 | 合計(jì) | |
| |||
| 30 | ||
合計(jì) | 45 |
附表:
|
|
|
|
|
|
|
|
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com