設(shè)函數(shù)
.
(1)若
在
時(shí)有極值,求實(shí)數(shù)
的值和
的極大值;
(2)若
在定義域上是增函數(shù),求實(shí)數(shù)
的取值范圍.
(1)極大值為
(2)![]()
解析試題分析:(1)先求導(dǎo),根據(jù)
在
時(shí)有極值,則
,可求得
的值。代入導(dǎo)數(shù)解析式并整理,令導(dǎo)數(shù)大于0可得增區(qū)間,令導(dǎo)數(shù)小于0可得減區(qū)間。根據(jù)單調(diào)性可求極值。(2)
在定義域上是增函數(shù),則當(dāng)
時(shí)
恒成立。因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/47/d/hoa6d1.png" style="vertical-align:middle;" />,且
,所以只需
時(shí)
,即
恒成立?捎没静坏仁角
的最大值則
。
(1)∵
在
時(shí)有極值,∴有![]()
又
∴
, ∴
2分
∴有![]()
由
得
,![]()
又
∴由
得
或![]()
由
得![]()
∴
在區(qū)間
和
上遞增,在區(qū)間
上遞減 5分
∴
的極大值為
6分
(2)若
在定義域上是增函數(shù),則
在
時(shí)恒成立![]()
,
需
時(shí)
恒成立, 9分
化
為
恒成立,![]()
, ![]()
為所求。 12分
考點(diǎn):用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值、最值。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
的圖象過(guò)點(diǎn)P(0,2),且在點(diǎn)M(-1,
)處的切線方程
。
(1)求函數(shù)
的解析式;
(2)求函數(shù)
與
的圖像有三個(gè)交點(diǎn),求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
(1)若函數(shù)f(x)在R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)在區(qū)間(-1,1)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,長(zhǎng)度為3的線段AB的端點(diǎn)A、B分別在
軸上滑動(dòng),點(diǎn)M在線段AB上,且
,
(1)若點(diǎn)M的軌跡為曲線C,求其方程;
(2)過(guò)點(diǎn)
的直線
與曲線C交于不同兩點(diǎn)E、F,N是曲線上不同于E、F的動(dòng)點(diǎn),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=ln x+2x,g(x)=a(x2+x).
(1)若a=
,求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)若f(x)≤g(x)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
.
(1)若曲線
在點(diǎn)
處與直線
相切,求a,b的值;
(2)求函數(shù)
的單調(diào)區(qū)間.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com