設(shè)數(shù)列
的前
項(xiàng)和為
,已知
(n∈N*).
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)求證:當(dāng)x>0時(shí),![]()
(Ⅲ)令
,數(shù)列
的前
項(xiàng)和為
.利用(2)的結(jié)論證明:當(dāng)n∈N*且n≥2時(shí),
.
(Ⅰ)
;(Ⅱ)參考解析;(Ⅲ)參考解析
解析試題分析:(Ⅰ)由數(shù)列的求和與通項(xiàng)的等式,遞推一個(gè)等式兩式相減可得到一個(gè)
的
,
的一個(gè)一節(jié)遞推式
(
).將等式的兩邊同除以
,即可得到
是一個(gè)等差數(shù)列,再通過(guò)求出
的通項(xiàng),即可得到
的通項(xiàng)式.最后檢驗(yàn)一下n=1時(shí)即可.
(Ⅱ)不等式的證明通過(guò)轉(zhuǎn)化為兩函數(shù)的值在
大于零恒成立即可.通過(guò)求導(dǎo)可得導(dǎo)函數(shù)恒大于零.所以原函數(shù)在
上遞增.函數(shù)的最小值是大于零.
(Ⅲ)由(Ⅰ)得到的數(shù)列可得
的通項(xiàng).由于通項(xiàng)中存在
的形式.所以奇偶項(xiàng)的符號(hào)不一樣.通過(guò)整理轉(zhuǎn)化為
.結(jié)合(Ⅱ)得到的結(jié)論令
.可得
.這樣就把分?jǐn)?shù)和的形式改為對(duì)數(shù)的和的形式即可.
試題解析:(1)由
,得
(
) 2分
兩式相減,得
,即
(
)
于是
,所以數(shù)列
是公差為1的等差數(shù)列 .. .3分
又
,所以
.
所以
,故
. .5分
(2)令
,則
,7分
∴
在
時(shí)單調(diào)遞增,
,即當(dāng)
時(shí),
.9分
(3)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d2/3/1jfye4.png" style="vertical-align:middle;" />,則當(dāng)n≥2時(shí),![]()
![]()
. 11分
下面證![]()
令
,由(2)可得
,所以
,
, ,![]()
以上
個(gè)式相加,即有![]()
∴
14分
考點(diǎn):1.數(shù)列的通項(xiàng).構(gòu)造求通項(xiàng)的思想.3.函數(shù)的求導(dǎo)及單調(diào)性.4.數(shù)列、函數(shù)不等式的應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
,曲線
通過(guò)點(diǎn)(0,2a+3),且在
處的切線垂直于y軸.
(I)用a分別表示b和c;
(II)當(dāng)bc取得最大值時(shí),寫(xiě)出
的解析式;
(III)在(II)的條件下,g(x)滿足
,求g(x)的最大值及相應(yīng)x值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
(Ⅰ)
時(shí),求
在
處的切線方程;
(Ⅱ)若
對(duì)任意的
恒成立,求實(shí)數(shù)
的取值范圍;
(Ⅲ)當(dāng)
時(shí),設(shè)函數(shù)
,若
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某連鎖分店銷售某種商品,每件商品的成本為
元,并且每件商品需向總店交
元的管理費(fèi),預(yù)計(jì)當(dāng)每件商品的售價(jià)為
元時(shí),一年的銷售量為
萬(wàn)件.
(1)求該連鎖分店一年的利潤(rùn)
(萬(wàn)元)與每件商品的售價(jià)
的函數(shù)關(guān)系式
;
(2)當(dāng)每件商品的售價(jià)為多少元時(shí),該連鎖分店一年的利潤(rùn)
最大,并求出
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知a為給定的正實(shí)數(shù),m為實(shí)數(shù),函數(shù)f(x)=ax3-3(m+a)x2+12mx+1.
(Ⅰ)若f(x)在(0,3)上無(wú)極值點(diǎn),求m的值;
(Ⅱ)若存在x0∈(0,3),使得f(x0)是f(x)在[0,3]上的最值,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
的圖象在與
軸交點(diǎn)處的切線方程是
.
(I)求函數(shù)
的解析式;
(II)設(shè)函數(shù)
,若
的極值存在,求實(shí)數(shù)
的取值范圍以及函數(shù)
取得極值時(shí)對(duì)應(yīng)的自變量
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.![]()
(Ⅰ)若函數(shù)在區(qū)間
其中
上存在極值,求實(shí)數(shù)
的取值范圍;
(Ⅱ)如果當(dāng)
時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(
為實(shí)常數(shù)) .
(1)當(dāng)
時(shí),求函數(shù)
在
上的最大值及相應(yīng)的
值;
(2)當(dāng)
時(shí),討論方程
根的個(gè)數(shù).
(3)若
,且對(duì)任意的
,都有
,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=ax4lnx+bx4﹣c(x>0)在x=1處取得極值﹣3﹣c,其中a,b,c為常數(shù).
(1)試確定a,b的值;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若對(duì)任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com