如圖,正方形A1BA2C的邊長為4,D是A1B的中點(diǎn),E是BA2上的點(diǎn),將△A1DC
及△A2EC分別沿DC和EC折起,使A1、A2重合于A,且平面ADC⊥平面EAC.
(1)求證:AC⊥DE;![]()
(2)求二面角A-DE-C的余弦值。
(1)證明過程詳見試題解析;(2)二面角
的余弦值為
.
解析試題分析:(1)由已知條件證出
互相垂直,以
為坐標(biāo)系原點(diǎn)建立空間坐標(biāo)系,寫出各點(diǎn)坐標(biāo),求出
即證得AC⊥DE;(2)先求出平面DCE的法向量
,平面
的法向量
,兩法向量的夾角即為所求.
∵平面![]()
平面
,且![]()
∴![]()
平面
,∴![]()
設(shè)
,在Rt
,![]()
,∴
是
中點(diǎn)
分別以AD,AE,AC為x軸,y軸,z軸建立空間直角坐標(biāo)系![]()
(1)![]()
![]()
(2)
設(shè)平面DCE的法向量為![]()
,且![]()
,
又
平面
,∴平面
的法向量為
.
∴二面角
的余弦值為![]()
考點(diǎn):直線與平面位置關(guān)系、空間角的求法.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱
中,點(diǎn)
在平面ABC內(nèi)的射影D在AC上,
,
.
(1)證明:
;
(2)設(shè)直線
與平面
的距離為
,求二面角
的大小.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在斜三棱柱ABC-A1B1C1中,側(cè)面ACC1A1⊥面ABC,AA1=
a,A1C=CA=AB=a,AB⊥AC,D為AA1中點(diǎn).
(1)求證:CD⊥面ABB1A1;
(2)在側(cè)棱BB1上確定一點(diǎn)E,使得二面角E-A1C1-A的大小為
.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.![]()
(1)證明:PA⊥BD;
(2)若PD=AD,求二面角A-PB-C的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示的幾何體中,面
為正方形,面
為等腰梯形,
,
,
,且平面![]()
平面
.
(1)求
與平面
所成角的正弦值;
(2)線段
上是否存在點(diǎn)
,使平面![]()
平面
?
證明你的結(jié)論.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐
的底面是正方形,側(cè)棱
底面
,過
作
垂直
交
于
點(diǎn),作
垂直
交
于
點(diǎn),平面
交
于
點(diǎn),且
,
.![]()
(1)設(shè)點(diǎn)
是
上任一點(diǎn),試求
的最小值;
(2)求證:
、
在以
為直徑的圓上;
(3)求平面
與平面
所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
,AF=1,M是線段EF的中點(diǎn).![]()
求證:(1)AM∥平面BDE;
(2)AM⊥平面BDF.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com