分析 (1)利用構(gòu)造平行四邊形方法證明BB1D1D是平行四邊形,從而得到B1D1∥平面A1BD;
(2)利用線面垂直的定義來(lái)證明AC⊥平面BB1D,從而得到MD⊥AC.
解答 (1)證明:由直四棱柱,得BB1∥DD1,
又∵BB1=DD1,∴BB1D1D是平行四邊形,
∴B1D1∥BD.
而B(niǎo)D?平面A1BD,B1D1?平面A1BD,
∴B1D1∥平面A1BD.
(2)證明∵BB1⊥平面ABCD,AC?平面ABCD,
∴BB1⊥AC.
又∵BD⊥AC,且BD∩BB1=B,∴AC⊥平面BB1D.
而MD?平面BB1D,∴MD⊥AC.
點(diǎn)評(píng) 本題屬于空間立體幾何線面平行與判定的高考常考題型,考生應(yīng)熟悉應(yīng)用構(gòu)造平行四邊形法證明線面平行,熟悉應(yīng)用相關(guān)線面垂直判定的知識(shí)點(diǎn).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -$\frac{{\sqrt{21}}}{7}$ | B. | $\frac{{\sqrt{21}}}{7}$ | C. | $\frac{{\sqrt{21}}}{14}$ | D. | -$\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 必要不充分條件 | B. | 充分不必要條件 | ||
| C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -1 | B. | -2 | C. | -3 | D. | 1 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com