欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
19.已知函數f1(x)=|x-1|,f2(x)=$\frac{1}{3}$x+1,g(x)=$\frac{{f}_{1}(x)+{f}_{2}(x)}{2}$+$\frac{|{f}_{1}(x)-{f}_{2}(x)|}{2}$,若a,b∈[-1,5],且當x1,x2∈[a,b](x1≠x2)時,$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$>0恒成立,則b-a的最大值為5.

分析 由題意可得,g(x)=max{f(x1),f(x2)},作出函數g(x)的圖象,$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$>0恒成立等價于函數為增函數,由圖象得答案.

解答 解:由f1(x)=|x-1|,f2(x)=$\frac{1}{3}$x+1,g(x)=$\frac{{f}_{1}(x)+{f}_{2}(x)}{2}$+$\frac{|{f}_{1}(x)-{f}_{2}(x)|}{2}$,
得g(x)=max{f(x1),f(x2)},作出函數g(x)的圖象如圖:

若a,b∈[-1,5],且當x1,x2∈[a,b](x1≠x2)時,$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$>0恒成立,
等價于函數g(x)為增函數,
由圖可知,x∈[0,5],則(b-a)max=5.
故答案為:5.

點評 本題考查函數的值域及單調性,考查了數學轉化思想方法和數形結合的解題思想方法,正確理解題意是解答該題的關鍵,是中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

9.若Sn,Tn分別是等差數列{an},{bn}的前n項的和,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n-1}{3n+8}$,$\frac{{a}_{5}}{_{5}}$=(  )
A.$\frac{2}{3}$B.$\frac{17}{35}$C.$\frac{1}{2}$D.$\frac{9}{23}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.8${\;}^{\frac{2}{3}}$-lg100的值為( 。
A.4B.2C.1D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.如圖所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,點M是棱BB1上一點.
(1)求證:B1D1∥平面A1BD;
(2)求證:MD⊥AC.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知圓C:x2+y2=9,點A(-5,0),在直線OA上(O為坐標原點),存在定點B(不同于點A),滿足:對于圓C上任一點P,都有$\frac{PB}{PA}$為一常數,試求所有滿足條件的點B的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.對于0≤m≤4中的任意m,不等式x2+mx>4x+m-3恒成立,則x的取值范圍是( 。
A.-1≤x≤3B.x≤-1C.x≥3D.x<-1或x>3

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.已知拋物線C:y2=2px(p>0),其焦點F到準線的距離為2,直線l與拋物線C相交于不同于原點的兩點A,B.
(1)求拋物線C的方程;
(2)若以AB為直徑的圓恒過原點O,求證:直線l過定點;
(3)若直線l過拋物線C的焦點F,求△OAB面積的取值范圍(O為坐標原點).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.某校高一年級抽出100名學生參加數學競賽,由成績得到如圖頻率分布直方圖,由于一些數據丟失,試利用頻率分布直方圖求:
(1)這100名學生數學成績在[60,90]的人數約為多少人;
(2)這100名學生成績的眾數與中位數;
(3)這100名學生的平均成績.(四舍五入保留1位小數)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.下列結論判斷正確的是( 。
A.任意兩條直線確定一個平面
B.三條平行直線最多確定三個平面
C.棱長為1的正方體的內切球的表面積為4π
D.若平面α⊥平面β,平面β⊥平面γ,則平面α∥平面γ

查看答案和解析>>

同步練習冊答案