【題目】如圖,已知橢圓C:
的離心率為
,并且橢圓經(jīng)過點(diǎn)P(1,
),直線l的方程為x=4.
![]()
(1)求橢圓的方程;
(2)已知橢圓內(nèi)一點(diǎn)E(1,0),過點(diǎn)E作一條斜率為k的直線與橢圓交于A,B兩點(diǎn),交直線l于點(diǎn)M,記PA,PB,PM的斜率分別為k1,k2,k3.問:是否存在常數(shù)
,使得k1+k2=
k3?若存在,求出
的值;若不存在,請(qǐng)說明理由.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,
(1)當(dāng)
時(shí),求
的最大值和最小值;
(2)求實(shí)數(shù)
的取值范圍,使
在區(qū)間
上是單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某野生動(dòng)物保護(hù)區(qū)內(nèi)某種野生動(dòng)物的數(shù)量,調(diào)查人員某天逮到這種動(dòng)物1200只作好標(biāo)記后放回,經(jīng)過一星期后,又逮到這種動(dòng)物1000只,其中作過標(biāo)記的有100只,按概率的方法估算,保護(hù)區(qū)內(nèi)有多少只該種動(dòng)物.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
的前項(xiàng)和為
,且
,記
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為建設(shè)美麗鄉(xiāng)村,政府欲將一塊長(zhǎng)12百米,寬5百米的矩形空地ABCD建成生態(tài)休閑園,園區(qū)內(nèi)有一景觀湖EFG(圖中陰影部分).以AB所在直線為x軸,AB的垂直平分線為y軸,建立平面直角坐標(biāo)系xOy(如圖所示).景觀湖的邊界曲線符合函數(shù)
模型.園區(qū)服務(wù)中心P在x軸正半軸上,PO=
百米.
![]()
(1)若在點(diǎn)O和景觀湖邊界曲線上一點(diǎn)M之間修建一條休閑長(zhǎng)廊OM,求OM的最短長(zhǎng)度;
(2)若在線段DE上設(shè)置一園區(qū)出口Q,試確定Q的位置,使通道直線段PQ最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某兒童樂園在“六一”兒童節(jié)推出了一項(xiàng)趣味活動(dòng).參加活動(dòng)的兒童需轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動(dòng)后,待轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄指針?biāo)竻^(qū)域中的數(shù).設(shè)兩次記錄的數(shù)分別為x,y.獎(jiǎng)勵(lì)規(guī)則如下:
![]()
①若
,則獎(jiǎng)勵(lì)玩具一個(gè);
②若
,則獎(jiǎng)勵(lì)水杯一個(gè);
③其余情況獎(jiǎng)勵(lì)飲料一瓶.
假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個(gè)區(qū)域劃分均勻.小亮準(zhǔn)備參加此項(xiàng)活動(dòng).
(Ⅰ)求小亮獲得玩具的概率;
(Ⅱ)請(qǐng)比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間和極值;
(2)若對(duì)于任意
,都有
成立,求實(shí)數(shù)
的取值范圍;
(3)若
,且
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
(
且
)在區(qū)間
上的最大值與最小值之和為
,
,其中
.
(1)直接寫出
的解析式和單調(diào)性;
(2)若
對(duì)
恒成立,求實(shí)數(shù)
的取值范圍;
(3)設(shè)
,若
,使得對(duì)
,都有
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,圓
的參數(shù)方程為
(
為參數(shù)),圓
與圓
外切于原點(diǎn)
,且兩圓圓心的距離
,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓
和圓
的極坐標(biāo)方程;
(2)過點(diǎn)
的直線
、
與圓
異于點(diǎn)
的交點(diǎn)分別為點(diǎn)
和點(diǎn)
,與圓
異于點(diǎn)
的交點(diǎn)分別為點(diǎn)
和點(diǎn)
,且
.求四邊形
面積的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com