【題目】若在定義域內(nèi)存在實(shí)數(shù)
,使得
成立,則稱函數(shù)有“和一點(diǎn)”
.
(1)函數(shù)
是否有“和一點(diǎn)”?請(qǐng)說(shuō)明理由;
(2)若函數(shù)
有“和一點(diǎn)”,求實(shí)數(shù)
的取值范圍;
(3)求證:
有“和一點(diǎn)”.
【答案】(1)不存在;(2)a>﹣2;(3)見(jiàn)解析
【解析】
(1)解方程
即可判斷;
(2)由題轉(zhuǎn)化為2(x+1)+a+2x+1=2x+a+2x+2+a+2有解,分離參數(shù)a=2x﹣2求值域即可求解;
(3)由題意判斷方程cos(x+1)=cosx+cos1是否有解即可.
(1)若函數(shù)有“和一點(diǎn)”
,則
不合題意
故不存在
(2)若函數(shù)f(x)=2x+a+2x有“和一點(diǎn)”
.
則方程f(x+1)=f(x)+f(1)有解,
即2(x+1)+a+2x+1=2x+a+2x+2+a+2有解,
即a=2x﹣2有解,
故a>﹣2;
(3)證明:令f(x+1)=f(x)+f(1),
即cos(x+1)=cosx+cos1,
即cosxcos1﹣sinxsin1﹣cosx=cos1,
即(cos1﹣1)cosx﹣sinxsin1=cos1,
故存在θ,
故
cos(x+θ)=cos1,
即
cos(x+θ)=cos1,
即cos(x+θ)
,
∵cos21﹣(2﹣2cos1)
=cos21+2cos1﹣2
<cos2
2cos
2
2<0,
故0
1,
故方程cos(x+1)=cosx+cos1有解,
即f(x)=cosx函數(shù)有“和一點(diǎn)”
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若
在
處的切線平行于
軸,求
的值和
的極值;
(2)若過(guò)點(diǎn)
可作曲線
的三條切線,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形
中,
、
分別是
、
上的點(diǎn),
,
,
是
的中點(diǎn),現(xiàn)沿著
翻折,使平面
平面
.
![]()
(Ⅰ)
為
的中點(diǎn),求證:
平面
.
(Ⅱ)求異面直線
與
所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程](10分)
在極坐標(biāo)系中,圓C的極坐標(biāo)方程為
,若以極點(diǎn)O為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系.
(1)求圓C的一個(gè)參數(shù)方程;
(2)在平面直角坐標(biāo)系中,
是圓C上的動(dòng)點(diǎn),試求
的最大值,并求出此時(shí)點(diǎn)P的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
是定義域?yàn)?/span>
的偶函數(shù),當(dāng)
時(shí),
,若關(guān)于
的方程![]()
有且僅有6個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)
的取值范圍為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:①對(duì)于獨(dú)立性檢驗(yàn),
的值越大,說(shuō)明兩事件相關(guān)程度越大,②以模型
去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè)
,將其變換后得到線性方程
,則
的值分別是
和
,③某中學(xué)有高一學(xué)生400人,高二學(xué)生300人,高三學(xué)生200人,學(xué)校團(tuán)委欲用分層抽樣的方法抽取18名學(xué)生進(jìn)行問(wèn)卷調(diào)查,則高一學(xué)生被抽到的概率最大,④通過(guò)回歸直線
=
+
及回歸系數(shù)
,可以精確反映變量的取值和變化趨勢(shì),其中正確的個(gè)數(shù)是
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在上海自貿(mào)區(qū)的利好刺激下,
公司開(kāi)拓國(guó)際市場(chǎng),基本形成了市場(chǎng)規(guī)模;自2014年1月以來(lái)的第
個(gè)月(2014年1月為第一個(gè)月)產(chǎn)品的內(nèi)銷量、出口量和銷售總量(銷售總量=內(nèi)銷量+出口量)分別為
、
和
(單位:萬(wàn)件),依據(jù)銷售統(tǒng)計(jì)數(shù)據(jù)發(fā)現(xiàn)形成如下?tīng)I(yíng)銷趨勢(shì):
,
(其中
,
為常數(shù),
),已知
萬(wàn)件,
萬(wàn)件,
萬(wàn)件.
(1)求
,
的值,并寫出
與
滿足的關(guān)系式;
(2)證明:
逐月遞增且控制在2萬(wàn)件內(nèi);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校辦工廠請(qǐng)了30名木工制作200把椅子和100張課桌.已知制作一張課桌與制作一把椅子的工時(shí)數(shù)之比為10:7,問(wèn)30名工人如何分組(一組制作課桌,另一組制作椅子)能使任務(wù)完成最快?請(qǐng)利用二分法的知識(shí)解答.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知斜三棱柱ABC-A1B1C1的側(cè)面A1ACC1與底面ABC垂直,∠ABC=900,BC=2,AC=
,且AA1⊥A1C,AA1=A1C.
(Ⅰ)求側(cè)棱A1A與底面ABC所成角的大小;
(Ⅱ)求側(cè)面A1ABB1與底面ABC所成二面角的大小。
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com