已知
(
)
(1)若方程
有3個不同的根,求實數(shù)
的取值范圍;
(2)在(1)的條件下,是否存在實數(shù)
,使得
在
上恰有兩個極值點
,且滿足
,若存在,求實數(shù)
的值,若不存在,說明理由.
(1)
;(2)不存在,參考解析
解析試題分析:(1)由已知
(
),若方程
有3個不同的根,則可得到
或
對兩個方程分別討論即可到結(jié)論.
(2)在(1)的條件下,是否存在實數(shù)
,使得
在
上恰有兩個極值點
,通過對函數(shù)求導(dǎo),判斷導(dǎo)函數(shù)的根的情況,通過換元使得等式簡潔些.要滿足
,由于
,所以可得
,通過驗證根是否存在.即可得到結(jié)論.
(1)解:由
得:
或![]()
可得
或
且![]()
∵方程
有3個不同的根,
∴方程
有兩個不同的根
∴![]()
又∵
,且要保證
能取到0∴
即![]()
∴
.
(2)解:∵![]()
令
,設(shè)
∴![]()
∵
∴
∴![]()
![]()
∵
∴
,
∴![]()
∴存在
,使得
,另外有
,使得![]()
假設(shè)存在實數(shù)
,使得
在
上恰有兩個極值點
,且滿足![]()
則存在
,使得
,另外有
,即![]()
∴
,∴
,即![]()
即
(*)
設(shè)![]()
∴
∵
∴![]()
∴
∴
在
上是增函數(shù)
∴![]()
![]()
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=x+
的圖象為C1,C1關(guān)于點A(2,1)對稱的圖象為C2,C2對應(yīng)的函數(shù)為g(x).
(1)求g(x)的解析式;
(2)若直線y=m與C2只有一個交點,求m的值和交點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013•重慶)某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12000π元(π為圓周率).
(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;
(2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時該蓄水池的體積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某幼兒園準(zhǔn)備建一個轉(zhuǎn)盤,轉(zhuǎn)盤的外圍是一個周長為k米的圓.在這個圓上安裝座位,且每個座位和圓心處的支點都有一根直的鋼管相連經(jīng)預(yù)算,轉(zhuǎn)盤上的每個座位與支點相連的鋼管的費用為3k元/根,且當(dāng)兩相鄰的座位之間的圓弧長為x米時,相鄰兩座位之間的鋼管和其中一個座位的總費用為
k元.假設(shè)座位等距分布,且至少有兩個座位,所有座位都視為點,且不考慮其他因素,記轉(zhuǎn)盤的總造價為y元.
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(2)當(dāng)k=50米時,試確定座位的個數(shù),使得總造價最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
).
(I)若
的定義域和值域均是
,求實數(shù)
的值;
(II)若
在區(qū)間
上是減函數(shù),且對任意的
,![]()
,總有
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
是偶函數(shù).
(1)求
的值;
(2)設(shè)
,若函數(shù)
與
的圖象有且只有一個公共點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
,
.
(1)解方程:
;
(2)令
,
,求證:![]()
(3)若
是實數(shù)集
上的奇函數(shù),且
對任意實數(shù)
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)判斷函數(shù)
的奇偶性;
(2)試用函數(shù)單調(diào)性定義說明函數(shù)
在區(qū)間
和
上的增減性;
(3)若
滿足:
,試證明:
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com