【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線
的極坐標(biāo)方程是
,以極點(diǎn)為原點(diǎn),極軸為
軸的正半軸建立平面直角坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù)).
(Ⅰ)寫出直線
的普通方程與曲線
的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線
經(jīng)過伸縮變換
得到曲線
,若點(diǎn)
,直線
與
交與
,
,求
,
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù),
).以原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸,與直角坐標(biāo)系
取相同的長度單位,建立極坐標(biāo)系.設(shè)曲線
的極坐標(biāo)方程為
.
(Ⅰ)設(shè)
為曲線
上任意一點(diǎn),求
的取值范圍;
(Ⅱ)若直線
與曲線
交于兩點(diǎn)
,
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
,給出四個(gè)結(jié)論:
①函數(shù)
是最小正周期為
的奇函數(shù);
②函數(shù)
的圖像的一條對稱軸是
;
③函數(shù)
圖像的一個(gè)對稱中心是
;
④函數(shù)
的遞增區(qū)間為
.則正確結(jié)論的個(gè)數(shù)為( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直角梯形
中,
是邊長為2的等邊三角形,
.沿
將
折起,使
至
處,且
;然后再將
沿
折起,使
至
處,且面
面
,
和
在面
的同側(cè).
![]()
![]()
(Ⅰ) 求證:
平面
;
(Ⅱ) 求平面
與平面
所構(gòu)成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個(gè)銷售季度內(nèi),每售出
該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每
虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直圖,如圖所示.經(jīng)銷商為下一個(gè)銷售季度購進(jìn)了
該農(nóng)產(chǎn)品.以
(
)表示下一個(gè)銷售季度內(nèi)的市場需求量,
(單位:元)表示下一個(gè)銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.
(Ⅰ)將
表示為
的函數(shù);
(Ⅱ)根據(jù)直方圖估計(jì)利潤
不少于57000元的概率.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年“一帶一路”國際合作高峰論壇于今年5月14日至15日在北京舉行.為高標(biāo)準(zhǔn)完成高峰論壇會(huì)議期間的志愿服務(wù)工作,將從27所北京高校招募大學(xué)生志愿者,某調(diào)查機(jī)構(gòu)從是否有意愿做志愿者在某高校訪問了80人,經(jīng)過統(tǒng)計(jì),得到如下丟失數(shù)據(jù)的列聯(lián)表:(
,表示丟失的數(shù)據(jù))
無意愿 | 有意愿 | 總計(jì) | |
男 |
|
| 40 |
女 | 5 |
|
|
總計(jì) | 25 |
| 80 |
(1)求出
的值,并判斷:能否有99.9%的把握認(rèn)為有意愿做志愿者與性別有關(guān);
(2)若表中無意愿做志愿者的5個(gè)女同學(xué)中,3個(gè)是大學(xué)三年級同學(xué),2個(gè)是大學(xué)四年級同學(xué).現(xiàn)從這5個(gè)同學(xué)中隨機(jī)選2同學(xué)進(jìn)行進(jìn)一步調(diào)查,求這2個(gè)同學(xué)是同年級的概率.
附參考公式及數(shù)據(jù):
,其中
.
| 0.40 | 0.25 | 0.10 | 0.010 | 0.005 | 0.001 |
| 0.708 | 1.323 | 2.706 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機(jī)構(gòu)為了調(diào)查人們對此種交通方式的滿意度,從交通擁堵不嚴(yán)重的
城市和交通擁堵嚴(yán)重的
城市分別隨機(jī)調(diào)查了20個(gè)用戶,得到了一個(gè)用戶滿意度評分的樣本,并繪制出莖葉圖如圖:
![]()
(Ⅰ)根據(jù)莖葉圖,比較兩城市滿意度評分的平均值的大小及方差的大小(不要求具體解答過程,給出結(jié)論即可);
(Ⅱ)若得分不低于80分,則認(rèn)為該用戶對此種交通方式“認(rèn)可”,否則認(rèn)為該用戶對此種交通方式“不認(rèn)同”,請根據(jù)此樣本完成此列聯(lián)表,并局此樣本分析是否有95%的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān);
(Ⅲ)若此樣本中的
城市和
城市各抽取1人,則在此2人中恰有一人認(rèn)可的條件下,此人來自
城市的概率是多少?
|
| 合計(jì) | |
認(rèn)可 | |||
不認(rèn)可 | |||
合計(jì) |
附: ![]()
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在測試中,客觀題難度的計(jì)算公式為
,其中
為第
題的難度,
為答對該題的人數(shù),
為參加測試的總?cè)藬?shù).現(xiàn)對某校高三年級120名學(xué)生進(jìn)行一次測試,共5道客觀題.測試前根據(jù)對學(xué)生的了解,預(yù)估了每道題的難度,如下表所示:
題號(hào) | 1 | 2 | 3 | 4 | 5 |
考前預(yù)估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
測試后,從中隨機(jī)抽取了10名學(xué)生,將他們編號(hào)后統(tǒng)計(jì)各題的作答情況,如下表所示(“√”表示答對,“×”表示答錯(cuò)):
| 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
(Ⅰ)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實(shí)測的答對人數(shù)及相應(yīng)的實(shí)測難度填入下表,并估計(jì)這120名學(xué)生中第5題的實(shí)測答對人數(shù);
題號(hào) | 1 | 2 | 3 | 4 | 5 |
實(shí)測答對人數(shù) | |||||
實(shí)測難度 |
(Ⅱ)從編號(hào)為1到5的5人中隨機(jī)抽取2人,求恰好有1人答對第5題的概率;
(Ⅲ)定義統(tǒng)計(jì)量
,其中
為第
題的實(shí)測難度,
為第
題的預(yù)估難度
.規(guī)定:若
,則稱該次測試的難度預(yù)估合理,否則為不合理.判斷本次測試的難度預(yù)估是否合理.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com