分析 作出不等式組對應的平面區(qū)域,利用目標函數的幾何意義,通過平移從而求出z的最大值和最小值.
解答
解:作出不等式組對應的平面區(qū)域如圖:(陰影部分).
由z=x+y得y=-x+z,即直線的截距最大,z也最大.
平移直線y=-x+z,即直線y=-x+z經過點B時,截距最大,此時z最大,
由$\left\{\begin{array}{l}{3x-y-6=0}\\{x-y+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=6}\end{array}\right.$,即B(4,6),
此時z=4+6=10.
經過點(0,O)時,截距最小,此時z最小,為z=0,
則z=x+y最大值與最小值的和為10,
故答案為:10.
點評 本題主要考查線性規(guī)劃的應用,利用目標函數的幾何意義,結合數形結合的數學思想是解決此類問題的基本方法.
科目:高中數學 來源: 題型:選擇題
| A. | $\frac{2\sqrt{34}}{17}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{4\sqrt{7}}{7}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | -$\frac{π}{3}$ | B. | $\frac{2}{3}$ | C. | ($\frac{2}{3}$,0) | D. | (0,0) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com