【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),在以
為極點(diǎn),
軸的正半軸為極軸的極坐標(biāo)系中,曲線
是圓心在極軸上,且經(jīng)過(guò)極點(diǎn)的圓.已知曲線
上的點(diǎn)
對(duì)應(yīng)的參數(shù)
,射線
與曲線
交于點(diǎn)![]()
(1)求曲線
、
的直角坐標(biāo)方程;
(2)若點(diǎn)
在曲線
上的兩個(gè)點(diǎn)且
,求
的值.
【答案】(1)
,
;(2)![]()
【解析】分析:(1)將
及對(duì)應(yīng)的參數(shù)
,代入
,解得
,即可得出曲線
的直角坐標(biāo)方程,由于曲線
是圓心在極軸上,且過(guò)極點(diǎn)的圓,將點(diǎn)
代入
,即可求解曲線
的方程;
(2)設(shè)
在曲線
上,求得
和
,即可求解
的值.
詳解:(1)將
及對(duì)應(yīng)的參數(shù)
,代入
,
得
,即
,
所以曲線
的方程為
為參數(shù),即
.
設(shè)圓
的半徑為
,由題意,圓
的極坐標(biāo)方程為
.(或
)
將點(diǎn)
代入
,得
,即![]()
所以曲線
的極坐標(biāo)方程為
,即![]()
(2)設(shè)
在曲線
上,
所以
,
,
所以
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)
的最大值為3,其圖象相鄰兩條對(duì)稱軸之間的距離為
.
![]()
(Ⅰ)求函數(shù)
的解析式和當(dāng)
時(shí)
的單調(diào)減區(qū)間;
(Ⅱ)
的圖象向右平行移動(dòng)
個(gè)長(zhǎng)度單位,再向下平移1個(gè)長(zhǎng)度單位,得到
的圖象,用“五點(diǎn)法”作出
在
內(nèi)的大致圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲和乙玩一個(gè)猜數(shù)游戲,規(guī)則如下:已知六張紙牌上分別寫(xiě)有1﹣![]()
六個(gè)數(shù)字,現(xiàn)甲、乙兩人分別從中各自隨機(jī)抽取一張,然后根據(jù)自己手中的數(shù)推測(cè)誰(shuí)手上的數(shù)更大.甲看了看自己手中的數(shù),想了想說(shuō):我不知道誰(shuí)手中的數(shù)更大;乙聽(tīng)了甲的判斷后,思索了一下說(shuō):我知道誰(shuí)手中的數(shù)更大了.假設(shè)甲、乙所作出的推理都是正確的,那么乙手中可能的數(shù)構(gòu)成的集合是_____
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在
上的函數(shù)
滿足對(duì)于任意實(shí)數(shù)
,
都有
,且當(dāng)
時(shí),
,
.
(1)判斷
的奇偶性并證明;
(2)判斷
的單調(diào)性,并求當(dāng)
時(shí),
的最大值及最小值;
(3)解關(guān)于
的不等式![]()
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖所示的幾何體中,
,
平面
,且
平面
,正方形
的邊長(zhǎng)為2,
為棱
中點(diǎn),平面
分別與棱
交于點(diǎn)
.
![]()
(Ⅰ)求證:
;
(Ⅱ)求證:平面
平面
;
(Ⅲ)求
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】氣象部門(mén)提供了某地區(qū)今年六月分(30天)的日最高氣溫的統(tǒng)計(jì)表如下:
日最高氣溫t(單位: |
|
|
|
|
天數(shù) | 6 | 12 |
|
|
由于工作疏忽,統(tǒng)計(jì)表被墨水污染,
和
數(shù)據(jù)不清楚,但氣象部門(mén)提供的資料顯示,六月份的日最高氣溫不高于
的頻率為0.9.
(1)若把頻率看作概率,求
,
的值;
(2)把日最高氣溫高干
稱為本地區(qū)的“高溫天氣”,根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此推測(cè)是否有95%的把握認(rèn)為本地區(qū)“高溫天氣”與西瓜“旺銷”有關(guān)?說(shuō)明理由.
高溫天氣 | 非高溫天氣 | 合計(jì) | |
旺銷 | 1 | ||
不旺銷 | 6 | ||
合計(jì) |
附![]()
P(K2≥R) | 0.10 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(α)=
.
(1)化簡(jiǎn)f(α);
(2)若f(α)=
,且
<α<
,求cosα-sinα的值;
(3)若α=-
,求f(α)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
是定義在
上的偶函數(shù),且
,若函數(shù)
有 6 個(gè)零點(diǎn),則實(shí)數(shù)
的取值范圍是( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠每日生產(chǎn)一種產(chǎn)品
噸,每日生產(chǎn)的產(chǎn)品當(dāng)日銷售完畢,日銷售額為
萬(wàn)元,產(chǎn)品價(jià)格隨著產(chǎn)量變化而有所變化,經(jīng)過(guò)段時(shí)間的產(chǎn)銷, 得到了
的一組統(tǒng)計(jì)數(shù)據(jù)如下表:
日產(chǎn)量 | 1 | 2 | 3 | 4 | 5 |
日銷售量 | 5 | 12 | 16 | 19 | 21 |
(1)請(qǐng)判斷
與
中,哪個(gè)模型更適合到畫(huà)
之間的關(guān)系?可從函數(shù)增長(zhǎng)趨勢(shì)方面給出簡(jiǎn)單的理由;
(2)根據(jù)你的判斷及下面的數(shù)據(jù)和公式,求出
關(guān)于
的回歸方程,并估計(jì)當(dāng)日產(chǎn)量
時(shí),日銷售額是多少?
參考數(shù)據(jù):
,![]()
![]()
線性回歸方程
中,
,
,
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com