分析 假設(shè)存在A(x1,y1),B(x2,y2)兩點關(guān)于直線l對稱,設(shè)出直線AB方程y=-$\frac{1}{2}$x+m,代入$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1,求得AB中點坐標(biāo),代入直線2x-y-1=0,求出m值,進一步求得AB中點坐標(biāo),即可說明不存在滿足題設(shè)條件的相異的兩點.
解答 解:假設(shè)存在A(x1,y1),B(x2,y2)兩點關(guān)于直線l對稱,
∵直線l:y=2x-1,
∴${k}_{AB}=-\frac{1}{2}$,
∴直線AB方程為y=-$\frac{1}{2}$x+m,代入$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1,得x2-mx+m2-12=0,
∴AB中點為($\frac{m}{2},\frac{3m}{4}$),
代入直線2x-y-1=0上,得m=4.
∴AB中點為(2,3),不在橢圓內(nèi)部,
∴不存在滿足題設(shè)條件的相異的兩點.
點評 本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線方程,考查對稱性,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | A與C互斥 | B. | A與B互為對立事件 | ||
| C. | B與C互斥 | D. | 任何兩個均互斥 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$ | B. | $\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$ | C. | $\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$+$\frac{1}{3}$$\overrightarrow{c}$ | D. | 3$\overrightarrow{a}$+3$\overrightarrow$+3$\overrightarrow{c}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com