【題目】海關(guān)對同時從
,
,
三個不同地區(qū)進(jìn)口的某種商品進(jìn)行抽樣檢測,從各地區(qū)進(jìn)口此種商品的數(shù)量(單位:件)如下表所示.工作人員用分層抽樣的方法從這些商品中共抽取6件樣品進(jìn)行檢測.
地區(qū) |
|
|
|
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來自
,
,
各地區(qū)商品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件送往甲機(jī)構(gòu)進(jìn)行進(jìn)一步檢測,求這2件商品來自相同地區(qū)的概率.
【答案】(1)
,
,
三個地區(qū)的商品被選取的件數(shù)分別為1,3,2.
(2)這2件商品來自相同地區(qū)的概率為
.
【解析】
試題分析:(1)求出抽樣比,即可得到這6件樣品中來自
,
,
各地區(qū)商品的數(shù)量;(2)這是一個古典概型,在這6件樣品中隨機(jī)抽取2件共有
個不同的基本事件,這2件商品可能都來自
地區(qū)或
地區(qū),
中包含
種不同的基本事件,得到概率
試題解析:(1)因為樣本容量與總體中的個體數(shù)的比是
,所以樣本中包含三個地區(qū)的個體數(shù)量分別是
,
,
.
所以
,
,
三個地區(qū)的商品被選取的件數(shù)分別為1,3,2.
(2)在這6件樣品中隨機(jī)抽取2件共有
個不同的基本事件,且這些事件是等可能發(fā)生的,
記“這2件商品來自相同地區(qū)”為事件
,則這2件商品可能都來自
地區(qū)或
地區(qū),
則
中包含
種不同的基本事件,
故
,即這2件商品來自相同地區(qū)的概率為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家之一,城市缺水問題較為突出.某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)
(噸),一位居民的月用水量不超過
的部分按平價收費(fèi),超出
的部分按議價收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照
,…,
分成9組,制成了如圖所示的頻率分布直方圖.
![]()
(1)求直方圖中
的值;
(2)若該市有110萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),請說明理由;
(3)估計居民月均用水量的中位數(shù)(精確到0.01)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將圓的一組
等分點(diǎn)分別涂上紅色或藍(lán)色,從任意一點(diǎn)開始,按逆時針方向依次記錄
(
)個點(diǎn)的顏色,稱為該圓的一個“
階色序”,當(dāng)且僅當(dāng)兩個
階色序?qū)?yīng)位置上的顏色至少有一個不相同時,稱為不同的
階色序.若某國的任意兩個“
階色序”均不相同,則稱該圓為“
階魅力圓”.“3階魅力圓”中最多可有的等分點(diǎn)個數(shù)為( )
A.4 B.6 C.8 D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中常數(shù)
.
(1)當(dāng)
,求函數(shù)
的單調(diào)遞增區(qū)間;
(2)設(shè)定義在
上的函數(shù)
在點(diǎn)
處的切線方程為
,若
在
內(nèi)恒成立,則稱
為函數(shù)
的“類對稱點(diǎn)”,當(dāng)
時,試問
是否存在“類對稱點(diǎn)”,若存在,請至少求出一個“類對稱點(diǎn)”的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,棱形
的邊長為6,
,
.將棱形
沿對角線
折起,得到三棱錐
,點(diǎn)
是棱
的中點(diǎn),
.
![]()
(Ⅰ)求證:
∥平面
;
(Ⅱ)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸,焦距為2,且長軸長是短軸長的
倍.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)設(shè)
,過橢圓
左焦點(diǎn)
的直線
交
于
、
兩點(diǎn),若對滿足條件的任意直線
,不等式
(
)恒成立,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人下棋比賽,規(guī)定誰比對方先多勝兩局誰就獲勝,比賽立即結(jié)束;若比賽進(jìn)行完6局還沒有分出勝負(fù)則判第一局獲勝者為最終獲勝且結(jié)束比賽.比賽過程中,每局比賽甲獲勝的概率為
,乙獲勝的概率為
,每局比賽相互獨(dú)立.求:(1)比賽兩局就結(jié)束且甲獲勝的概率;(2)恰好比賽四局結(jié)束的概率;(3)在整個比賽過程中,甲獲勝的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一個圓.
(1) 求實數(shù)m的取值范圍;
(2) 求該圓半徑r的取值范圍;
(3) 求該圓心的縱坐標(biāo)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,我海監(jiān)船在
島海域例行維權(quán)巡航,某時刻航行至
處,此時測得其東北方向與它相距
海里的
處有一外國船只,且
島位于海監(jiān)船正東
海里處。
![]()
(Ⅰ)求此時該外國船只與
島的距離;
(Ⅱ)觀測中發(fā)現(xiàn),此外國船只正以每小時
海里的速度沿正南方向航行。為了將該船攔截在離
島
海里處,不讓其進(jìn)入
島
海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值.
(參考數(shù)據(jù):
,
)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com