【題目】已知曲線
的參數(shù)方程為
(
為參數(shù)),曲線
的極坐標(biāo)方程為
.
(1)將曲線
的參數(shù)方程化為普通方程,將曲線
的極坐標(biāo)方程化為直角坐標(biāo)方程.
(2)曲線
,
是否相交?若相交,請求出公共弦長;若不相交,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定公差大于0的有限正整數(shù)等差數(shù)列
,其中,
為質(zhì)數(shù).甲、乙兩人輪流從
個石子中取石子,規(guī)定:每次每人可取
個石子,取走的石子不再放回,甲先取,取到最后一個石子者為勝.試問:誰有必勝策略?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,函數(shù)
.
(Ⅰ)求函數(shù)
的極值;
(Ⅱ)當(dāng)
時,證明:對一切的
,都有
恒成立;
(Ⅲ)當(dāng)
時,函數(shù)
,
有最小值,記
的最小值為
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,經(jīng)過點
且斜率為
的直線
與橢圓
有兩個不同的交點
和
.
(1)求
的取值范圍;
(2)設(shè)橢圓與
軸正半軸、
軸正半軸的交點分別為
,是否存在常數(shù)
,使得向量
與
共線?如果存在,求
值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C:
的離心率為
,并且橢圓經(jīng)過點P(1,
),直線l的方程為x=4.
![]()
(1)求橢圓的方程;
(2)已知橢圓內(nèi)一點E(1,0),過點E作一條斜率為k的直線與橢圓交于A,B兩點,交直線l于點M,記PA,PB,PM的斜率分別為k1,k2,k3.問:是否存在常數(shù)
,使得k1+k2=
k3?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知雙曲線
的兩條漸近線分別為
.
為坐標(biāo)原點,動直線
分別交直線
于
兩點(
分別在第一四象限),且
的面積恒為8.試探究:是否存在總與直線
有且只有一個公共點的雙曲線
?若存在,求出雙曲線
的方程;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種常見疾病可分為Ⅰ、Ⅱ兩種類型.為了解該疾病類型與地域、初次患該疾病的年齡(以下簡稱初次患病年齡)的關(guān)系,在甲、乙兩個地區(qū)隨機抽取100名患者調(diào)查其疾病類型及初次患病年齡,得到如下數(shù)據(jù):
![]()
(1)從Ⅰ型疾病患者中隨機抽取1人,估計其初次患病年齡小于40歲的概率;
(2)記“初次患病年齡在
的患者為“低齡患者”,初次患病年齡在
的患者為“高齡患者”,根據(jù)表中數(shù)據(jù),解決以下問題:
將以下兩個列聯(lián)表補充完整,并判斷“地域”“初次患病年齡”這兩個變量中哪個變量與該疾病的類型有關(guān)聯(lián)的可能性更大.(直接寫出結(jié)論,不必說明理由)
![]()
(ii)記(i)中與該疾病的類型有關(guān)聯(lián)的可能性更大的變量為
,問:是否有99.9%的把握認(rèn)為“該疾病的類型與
有關(guān)?”
附:![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的普通方程為
,以原點
為極點,
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(I)求
的參數(shù)方程與
的直角坐標(biāo)方程;
(II)射線
與
交于異于極點的點
,與
的交點為
,求
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com