【題目】如圖,底面是平行四邊形的四棱錐
中,點(diǎn)
是線段
上的點(diǎn),
平面
,
平面
,
,
,
.
![]()
(1)求證:點(diǎn)
是
中點(diǎn);
(2)求證:平面
平面
;
(3)求三棱錐
底面
上的高.
【答案】(1)證明見解析;(2)證明見解析;(3)![]()
【解析】
(1)連接
交
于
點(diǎn),連接
,即可證明
,由
是
中點(diǎn),即可證明點(diǎn)
是
中點(diǎn);
(2)根據(jù)題意,可證明
,且
即可證明
平面
.由平面與平面垂直的判定定理即可證明平面
平面
;
(3)根據(jù)題意,可知
平面
,從而求得
、
和
,從可得
.利用等體積法即可求得棱錐
底面
上的高.
(1)證明:連接
交
于
點(diǎn),連接
,如下圖所示:
![]()
因?yàn)樗倪呅?/span>
是平行四邊形,故
是
中點(diǎn),
又
平面
,
平面
,平面
平面
,
則
,
又
是
中點(diǎn),
則
是
中點(diǎn).
(2)因?yàn)?/span>
平面
,又
平面
,
所以
,
又
,
,則
平面
,
又
平面
,
所以平面
平面
.
(3)由題意可知
平面
,又![]()
所以
平面
,
又
,
則
,
,
則
,則
,
設(shè)三棱錐
底面
上的高為
,
則
,
另一方面,![]()
![]()
![]()
故![]()
所以解得
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合
,
,全集
.
(1)當(dāng)
時(shí),求
,
;
(2)若
是
成立的充分不必要條件,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】美國(guó)想通過對(duì)中國(guó)芯片的技術(shù)封鏡達(dá)到扼殺中國(guó)科技的企圖,但卻激發(fā)了中國(guó)“芯”的研究熱潮.某公司研發(fā)的
兩種芯片都已經(jīng)獲得成功.該公司研發(fā)芯片已經(jīng)耗費(fèi)資金2千萬(wàn)元,現(xiàn)在準(zhǔn)備投入資金進(jìn)行生產(chǎn)經(jīng)市場(chǎng)調(diào)查與預(yù)測(cè),生產(chǎn)
芯片的毛收入與投入的資金成正比,已知每投入4千萬(wàn)元,公司獲得毛收入1千萬(wàn)元;生產(chǎn)
芯片的毛收入
(千萬(wàn)元)與投入的資金
(千萬(wàn)元)的函數(shù)關(guān)系為
,其圖象如圖所示:
![]()
(1)試分別求出生產(chǎn)
兩種芯片的毛收入
(千萬(wàn)元)與投入資金
(千萬(wàn)元)的函數(shù)關(guān)系式;
(2)現(xiàn)在公司準(zhǔn)備投入4億元資金同時(shí)生產(chǎn)
兩種芯片,設(shè)投入
千萬(wàn)元生產(chǎn)
芯片,用
表示公司所獲利潤(rùn),當(dāng)
為多少時(shí),可以獲得最大利潤(rùn)?并求最大利潤(rùn).
(利潤(rùn)
芯片毛收入
芯片毛收入-研發(fā)耗費(fèi)資金)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)
的圖象是以原點(diǎn)為頂點(diǎn)且過點(diǎn)
的拋物線,反比例函數(shù)
的圖象(雙曲線)與直線
的兩個(gè)交點(diǎn)間的距離為8,
.
(1)求函數(shù)
的表達(dá)式;
(2)當(dāng)
時(shí),討論函數(shù)
的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,
,
是經(jīng)過小城
的東西方向與南北方向的兩條公路,小城
位于小城
的東北方向,直線距離
.現(xiàn)規(guī)劃經(jīng)過小城
修建公路
(
,
分別在
與
上),與
,
圍成三角形區(qū)域
.
(1)設(shè)
,
,求三角形區(qū)域
周長(zhǎng)的函數(shù)解析式
;
(2)現(xiàn)計(jì)劃開發(fā)周長(zhǎng)最短的三角形區(qū)域
,求該開發(fā)區(qū)域的面積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過點(diǎn)
的動(dòng)直線
與圓
:
交于M,N兩點(diǎn).
(Ⅰ)設(shè)線段MN的中點(diǎn)為P,求點(diǎn)P的軌跡方程;
(Ⅱ)若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
在區(qū)間
上有最小值1,最大值9.
(1)求實(shí)數(shù)a,b的值;
(2)設(shè)
,若不等式
在區(qū)間
上恒成立,求實(shí)數(shù)k的取值范圍;
(3)設(shè)
),若函數(shù)
有三個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)
.
(1)若
是
的兩個(gè)不同的根,是否存在實(shí)數(shù)
,使
成立?若存在,求
的值;若不存在,請(qǐng)說(shuō)明理由.
(2)設(shè)
,函數(shù)
已知方程
恰有3個(gè)不同的根.
(ⅰ)求
的取值范圍;
(ⅱ)設(shè)
分別是這3個(gè)根中的最小值與最大值,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=
(n∈N*)
(Ⅰ)證明當(dāng)n≥2時(shí),數(shù)列{nan}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)an;
(Ⅱ)求數(shù)列{n2an}的前n項(xiàng)和Tn;
(Ⅲ)對(duì)任意n∈N*,使得
恒成立,求實(shí)數(shù)λ的最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com