分析 (1)由已知推導(dǎo)出△DD1A≌△BB1A,從而得到BDD1B1是矩形,進而得到BD∥B1D1,由此能證明BD∥平面AB1C1D1.
(2)由已知得tan$\frac{α}{2}$=tan∠C1AD1=$\frac{{D}_{1}O}{AO}$=$\frac{{B}_{1}{D}_{1}}{{AC}_{1}}$,由ABCD是正方形,得AC=BD=B1D1,從而cosθ=cos∠CAC1=$\frac{AC}{A{C}_{1}}$=$\frac{{B}_{1}{D}_{1}}{A{C}_{1}}$.由此能證明cosθ=tan$\frac{α}{2}$.
解答
證明:(1)∵菱形AB1C1D1中,AD1=AB1,ABCD是正方形,
CC1⊥平面ABCD,且DD1∥BB1∥CC1,
∴△DD1A≌△BB1A,∴DD1=BB1,
∴BDD1B1是矩形,∴BD∥B1D1,
∵B1D1?平面AB1C1D1,BD?平面AB1C1D1,
∴BD∥平面AB1C1D1.
(2)設(shè)AC1∩B1D1=O,連結(jié)AC1,AB1,AC,
∵菱形AB1C1D1中,AC1⊥B1D1,∠D1C1B1=α.
∴tan$\frac{α}{2}$=tan∠C1AD1=$\frac{{D}_{1}O}{AO}$=$\frac{{B}_{1}{D}_{1}}{{AC}_{1}}$,
∵ABCD是正方形,∴AC=BD=B1D1,
∵直線AC1與平面ABCD所成的角為θ,
∴cosθ=cos∠CAC1=$\frac{AC}{A{C}_{1}}$=$\frac{{B}_{1}{D}_{1}}{A{C}_{1}}$.
∴cosθ=tan$\frac{α}{2}$.
點評 本題考查線面平行的證明,考查一個角的余弦值等于另一個角的半角的正切值的證明,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{3}$ | B. | $2\sqrt{3}$ | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2$\sqrt{6}$ | B. | 4 | C. | 4$\sqrt{6}$ | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com