【題目】對(duì)于數(shù)列
,若存在正數(shù)p,使得
對(duì)任意
都成立,則稱數(shù)列
為“擬等比數(shù)列”.
已知
,
且
,若數(shù)列
和
滿足:
,
且
,
.
若
,求
的取值范圍;
求證:數(shù)列
是“擬等比數(shù)列”;
已知等差數(shù)列
的首項(xiàng)為
,公差為d,前n項(xiàng)和為
,若
,
,
,且
是“擬等比數(shù)列”,求p的取值范圍
請(qǐng)用
,d表示
.
【答案】(1)
詳見(jiàn)解析;(2)
.
【解析】
由
即可求出結(jié)果;
根據(jù)題中“擬等比數(shù)列”的定義,由
,結(jié)合條件推出存在正數(shù)
,使得有
成立即可;
由題中條件
,
,
,先求出
的范圍;再根據(jù)
是“擬等比數(shù)列”,分類討論
和
,即可得出結(jié)果.
解:
,
,且
,
,
,
.
由題意得
,
當(dāng)
且
時(shí),
,
對(duì)任意
,都有
,
即存在
,使得有
,
數(shù)列數(shù)列
是“擬等比數(shù)列”;
,
,
,
,
,
,
由
得
,從而解得
,
又
是“擬等比數(shù)列”,故存在
,使得
成立,
當(dāng)
時(shí),
,
,
由
得
,
由圖象可知
在
時(shí)遞減,故
,
當(dāng)
時(shí),
,
,
由
得
,
由圖象可知
在
時(shí)遞減,故
,
由
得p的取值范圍是
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】考慮
的方格表,其中每個(gè)方格內(nèi)均填有數(shù)字0.每次操作可先選定三個(gè)實(shí)數(shù)
、
、
,然后選定一行,將這一行每個(gè)方格中的數(shù)都加上
(
為該方格所在的列數(shù),
);或選定一列,將這一列每個(gè)方格中的數(shù)都加上
(
為該方格所在的行數(shù),
),問(wèn):能否經(jīng)過(guò)有限次操作,使該方格表中四個(gè)角的數(shù)字變成1,而其他格的數(shù)字仍為0?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
外接圓上三段弧
的中點(diǎn)依次為
,其關(guān)于
的對(duì)稱點(diǎn)依次為
.若頂點(diǎn)與對(duì)應(yīng)旁切圓切點(diǎn)的連線交于一點(diǎn)
(界心),
為
的垂心,證明:
在以
為直徑的圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次會(huì)操活動(dòng)中,領(lǐng)操員讓編號(hào)為
的
名學(xué)生排成一個(gè)圓形陣,做
循環(huán)報(bào)數(shù),領(lǐng)操員一一記錄報(bào)數(shù)者的編號(hào),并要求報(bào)l、2的學(xué)生出列,報(bào)3的學(xué)生留在隊(duì)列中,并將編號(hào)改為此次循環(huán)報(bào)數(shù)中三名學(xué)生的編號(hào)之和.一直循環(huán)報(bào)數(shù)下去.當(dāng)操場(chǎng)上剩余的學(xué)生人數(shù)不超過(guò)兩名時(shí),報(bào)數(shù)活動(dòng)結(jié)束.領(lǐng)操員記錄最后留在操場(chǎng)的學(xué)生編號(hào)(例如,編號(hào)為
的九名學(xué)生排成一個(gè)圓形陣,報(bào)數(shù)結(jié)束后,只有原始編號(hào)為9的學(xué)生留在操場(chǎng),此時(shí),他的編號(hào)為45,領(lǐng)操員記錄下來(lái)的數(shù)據(jù)分別為l,2,3,4,5,6,7,8,9,6,15,24,45).已知共有2011名學(xué)生參加會(huì)操.
(1)最后留在場(chǎng)內(nèi)的學(xué)生最初的編號(hào)是幾號(hào)?
(2)求領(lǐng)操員記錄下的編號(hào)之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為抗擊新冠病毒,某部門(mén)安排甲、乙、丙、丁、戊五名專家到三地指導(dǎo)防疫工作.因工作需要,每地至少需安排一名專家,其中甲、乙兩名專家必須安排在同一地工作,丙、丁兩名專家不能安排在同一地工作,則不同的分配方法總數(shù)為( )
A.18B.24C.30D.36
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列敘述正確的是( )
A.相關(guān)關(guān)系是一種確定性關(guān)系,一般可分為正相關(guān)和負(fù)相關(guān)
B.回歸直線一定過(guò)樣本點(diǎn)的中心![]()
C.在回歸分析中,
為0.98的模型比
為0.80的模型擬合的效果好
D.某同學(xué)研究賣出的熱飲杯數(shù)
與氣溫
的關(guān)系,得到回歸方程
,則氣溫為2℃時(shí),一定可賣出142杯熱飲
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2022年北京冬奧運(yùn)動(dòng)會(huì)即第24屆冬季奧林匹克運(yùn)動(dòng)會(huì)將在2022年2月4日至2月20日在北京和張家口舉行,某研究機(jī)構(gòu)為了了解大學(xué)生對(duì)冰壺運(yùn)動(dòng)的興趣,隨機(jī)從某大學(xué)生中抽取了120人進(jìn)行調(diào)查,經(jīng)統(tǒng)計(jì)男生與女生的人數(shù)比為11:13,男生中有30人表示對(duì)冰壺運(yùn)動(dòng)有興趣,女生中有15人對(duì)冰壺運(yùn)動(dòng)沒(méi)有興趣.
(1)完成
列聯(lián)表,并判斷能否有99%的把握認(rèn)為“對(duì)冰壺運(yùn)動(dòng)是否有興趣與性別有關(guān)”?
有興趣 | 沒(méi)有興趣 | 合計(jì) | |
男 | 30 | ||
女 | 15 | ||
合計(jì) | 120 |
(2)用分層抽樣的方法從樣本中對(duì)冰壺運(yùn)動(dòng)有興趣的學(xué)生中抽取8人,求抽取的男生和女生分別為多少人?若從這8人中選取兩人作為冰壺運(yùn)動(dòng)的宣傳員,求選取的2人中恰好有1位男生和1位女生的概率.
附:
,其中n=a+b+c+d
P | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
| 2.072 | 2.076 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)l為曲線C:
在點(diǎn)
處的切線.
(1)求l的方程;
(2)證明:除切點(diǎn)
之外,曲線C在直線l的下方;
(3)求證:
(其中
,
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列事件是隨機(jī)事件的是( 。
①當(dāng)x>10時(shí),
; ②當(dāng)x∈R,x2+x=0有解
③當(dāng)a∈R關(guān)于x的方程x2+a=0在實(shí)數(shù)集內(nèi)有解; ④當(dāng)sinα>sinβ時(shí),α>β( )
A.①②B.②③C.③④D.①④
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com