已知圓
,圓
,動圓
與已知兩圓都外切.
(1)求動圓的圓心
的軌跡
的方程;
(2)直線
與點
的軌跡
交于不同的兩點
、
,
的中垂線與
軸交于點
,求點
的縱坐標(biāo)的取值范圍.
(1)動圓的圓心
的軌跡
的方程為:
;(2)![]()
解析試題分析:(1)兩圓外切,則兩圓圓心之間的距離等于兩圓的半徑之和,由此得
將兩式相減得:![]()
由雙曲線的定義可得軌跡
的方程.
(2)將直線
的方程
代入軌跡
的方程,利用根與系數(shù)的關(guān)系得到
、
的中點的坐標(biāo)(用
表示),從而得
的中垂線的方程。再令
得點
的縱坐標(biāo)(用
表示).根據(jù)
的范圍求出點
的縱坐標(biāo)的取值范圍.
本小題中要利用
及與雙曲線右支相交求
的范圍,這是一個易錯之處.
試題解析:(1)已知兩圓的圓心、半徑分別為![]()
設(shè)動圓
的半徑為
,由題意知:![]()
則![]()
所以點
在以
為焦點的雙曲線的右支上,其中
,則![]()
由此得
的方程為:
4分
(2)將直線代入雙曲線方程并整理得:![]()
設(shè)
的中點為![]()
依題意,直線
與雙曲線右支交于不同兩點,故![]()
且![]()
則
的中垂線方程為:![]()
令
得:
12分
考點:1、兩圓外切的性質(zhì);2、雙曲線的定義及方程;3、直線與圓錐曲線的關(guān)系
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心為直角坐標(biāo)系xOy的原點,焦點在s軸上,它的一個頂點到兩個焦點的距離分別是7和1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若P為橢圓C上的動點,M為過P且垂直于x軸的直線上的點,
=λ,求點M的軌跡方程,并說明軌跡是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在坐標(biāo)原點,
焦點在x軸上,左、右焦瞇分別為F1,F(xiàn)2,且|F1F2|=2,點P(1,
)在橢圓C上.
(I)求橢圓C的方程;
(II)過F1的直線l與橢圓C相交于A,B兩點,且
的面積為
,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點,焦點F在
軸上,離心率
,點
在橢圓C上.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若斜率為![]()
的直線
交橢圓
與
、
兩點,且
、
、
成等差數(shù)列,點M(1,1),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知左焦點為
的橢圓過點
.過點
分別作斜率為
的橢圓的動弦
,設(shè)
分別為線段
的中點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若
為線段
的中點,求
;
(3)若
,求證直線
恒過定點,并求出定點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
拋物線M:
的準(zhǔn)線過橢圓N:
的左焦點,以坐標(biāo)原點為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點A與點B,直線AB與x軸相交于點C.![]()
(1)求拋物線M的方程.
(2)設(shè)點A的橫坐標(biāo)為x1,點C的橫坐標(biāo)為x2,曲線M上點D的橫坐標(biāo)為x1+2,求直線CD的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,動點
到兩點
,
的距離之和等于
,設(shè)點
的軌跡為曲線
,直線
過點
且與曲線
交于
,
兩點.
(1)求曲線
的軌跡方程;
(2)是否存在△
面積的最大值,若存在,求出△
的面積;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
拋物線
與直線
相切,
是拋物線上兩個動點,
為拋物線的焦點,
的垂直平分線
與
軸交于點
,且
.
(1)求
的值;
(2)求點
的坐標(biāo);
(3)求直線
的斜率
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com