已知橢圓C的中心在坐標(biāo)原點,
焦點在x軸上,左、右焦瞇分別為F1,F(xiàn)2,且|F1F2|=2,點P(1,
)在橢圓C上.
(I)求橢圓C的方程;
(II)過F1的直線l與橢圓C相交于A,B兩點,且
的面積為
,求直線l的方程.
(I)
;(II)
或
.
解析試題分析:(I)設(shè)出橢圓的方程,根據(jù)已知條件列方程組,求出
和
的值,然后寫出橢圓的標(biāo)準(zhǔn)方程;(II)設(shè)直線
的方程為
,這樣避免討論斜率存在與否,與橢圓的方程聯(lián)立方程組解得
,
,根據(jù)三角形的面積公式表示出
的面積,結(jié)合已知條件求得
的值,代入所設(shè)的直線方程即可.
試題解析:(I)設(shè)橢圓
的方程為![]()
,
由已知可得
3分
解得:
,∴橢圓
的方程為
. 5分
(II)設(shè)直線
的方程為
,
由
消去
得
, 7分
,設(shè)
,
則
,
, 8分
∴
. 9分![]()
化簡,得
,即
,
解得
. 11分
故所求直線方程為
和
. 12分
考點:1、橢圓的定義及性質(zhì)的應(yīng)用;2、方程的根與系數(shù)的關(guān)系;3、三角形的面積公式;4、直線方程.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在坐標(biāo)原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,最小值為1.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若直線l:
與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點。求證: 直線l過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線
的焦點為
,準(zhǔn)線為
,
,以
為圓心的圓
與
相切于點
,
的縱坐標(biāo)為
,
是圓
與
軸除
外的另一個交點.
(I)求拋物線
與圓
的方程;
(II)過
且斜率為
的直線
與
交于
兩點,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點,焦點F在
軸上,離心率
,點
在橢圓C上.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若斜率為![]()
的直線
交橢圓
與
、
兩點,且
、
、
成等差數(shù)列,點M(1,1),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,已知橢圓
:
的離心率
,且橢圓C上一點
到點Q
的距離最大值為4,過點
的直線交橢圓
于點![]()
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為橢圓上一點,且滿足
(O為坐標(biāo)原點),當(dāng)
時,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
以點F1(-1,0),F(xiàn)2(1,0)為焦點的橢圓C經(jīng)過點(1,
)。
(I)求橢圓C的方程;
(II)過P點分別以
為斜率的直線分別交橢圓C于A,B,M,N,求證:
使得![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓
,圓
,動圓
與已知兩圓都外切.
(1)求動圓的圓心
的軌跡
的方程;
(2)直線
與點
的軌跡
交于不同的兩點
、
,
的中垂線與
軸交于點
,求點
的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的右焦點為
,上頂點為B,離心率為
,圓
與
軸交于
兩點
(Ⅰ)求
的值;
(Ⅱ)若
,過點
與圓
相切的直線
與
的另一交點為
,求
的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的中心在坐標(biāo)原點,右準(zhǔn)線為
,離心率為
.若直線
與橢圓
交于不同的兩點
、
,以線段
為直徑作圓
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若圓
與
軸相切,求圓
被直線
截得的線段長.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com