已知函數(shù)f(x)=![]()
(1)求f(f(-2))的值;
(2)求f(a2+1)(a∈R)的值;
(3)當(dāng)-4≤x<3時,求函數(shù)f(x)的值域.
(1) f(f(-2))=-21. (2)函數(shù)f(x)的值域是(-5,9].
解析試題分析:(1)先求出f(-2)=5,然后可知f(f(-2))=f(5)=-21.
(2)因為a2+1≥1>0,所以f(a2+1)=4-(a2+1)2=-a4-2a2+3.
(3)要根據(jù)-4≤x<0和x=0和0<x<3三種情況求出f(x)的值域,最后再求并集即可.
(1)∵f(-2)=1-2×(-2)=5,
∴f(f(-2))=f(5)=4-52=-21.………………(3分)
(2)∵當(dāng)a∈R時,a2+1≥1>0,
∴f(a2+1)=4-(a2+1)2=-a4-2a2+3(a∈R).…………(7分)
(3)①當(dāng)-4≤x<0時,
∵f(x)=1-2x,∴1<f(x)≤9.
②當(dāng)x=0時,f(0)=2.
③當(dāng)0<x<3時,∵f(x)=4-x2,∴-5<f(x)<4.
故當(dāng)-4≤x<3時,函數(shù)f(x)的值域是(-5,9].…………(12分).
考點:分段函數(shù)求值,求值域.
點評:分段函數(shù)求值時一定要看清楚x的取值范圍,并且求值域時要注意分段研究最后再求并集.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)建造一個容積為18立方米,深為2米的長方體有蓋水池。如果池底和池壁每平方米的造價分別是200元和150元,那么如何建造,池的造價最低,為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(其中a,b為實常數(shù))。
(Ⅰ)討論函數(shù)
的單調(diào)區(qū)間:
(Ⅱ)當(dāng)
時,函數(shù)
有三個不同的零點,證明:
:
(Ⅲ)若
在區(qū)間
上是減函數(shù),設(shè)關(guān)于x的方程
的兩個非零實數(shù)根為
,
。試問是否存在實數(shù)m,使得
對任意滿足條件的a及t
恒成立?若存在,求m的取值范圍;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題兩小題,每題6分,滿分12分)
⑴對任意
,試比較
與
的大。
⑵已知函數(shù)
的定義域為R,求實數(shù)k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
某單位用2160萬元購得一塊空地,計劃在該地塊上建造一棟至少10層、每層2000平方米的樓房.經(jīng)測算,如果將樓房建為x(x≥10)層,則每平方米的平均建筑費(fèi)用為560+48x(單位:元).為了使樓房每平方米的平均綜合費(fèi)用最少,該樓房應(yīng)建為多少層?
(注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購地費(fèi)用,平均購地費(fèi)用=
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)運(yùn)貨卡車以每小時
千米的速度勻速行駛130千米![]()
(單位:千米/小時).假設(shè)汽油的價格是每升2a元,而汽車每小時耗油
升,司機(jī)的工資是每小時14a元.(1)求這次行車總費(fèi)用
關(guān)于
的表達(dá)式;(2)當(dāng)
為何值時,這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值(a為常數(shù)) .
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com