已知拋物線
的焦點為F2,點F1與F2關(guān)于坐標(biāo)原點對稱,直線m垂直于x軸,垂足為T,與拋物線交于不同的兩點P、Q且
.
(1)求點T的橫坐標(biāo)
;
(2)若以F1,F2為焦點的橢圓C過點
.
①求橢圓C的標(biāo)準(zhǔn)方程;
②過點F2作直線l與橢圓C交于A,B兩點,求
的取值范圍.
(1)![]()
(2)
,![]()
解析試題分析:解:(1)由題意得
,
,設(shè)
,![]()
則
,
.
由
,
得
即
,① 2分
又
在拋物線上,則
,②
聯(lián)立①、②易得
4分
(2)①設(shè)橢圓的半焦距為
,由題意得
,
設(shè)橢圓
的標(biāo)準(zhǔn)方程為
,
則
③ ,
④ 5分
將④代入③,解得
或
(舍去)
所以
6分
故橢圓
的標(biāo)準(zhǔn)方程為
7分
②. (。┊(dāng)直線
的斜率不存在時,
,
,
又![]()
,所以
8分
(ⅱ)當(dāng)直線
的斜率存在時,設(shè)直線
的方程為
,![]()
由
得![]()
設(shè)
,則由根與系數(shù)的關(guān)系,
可得:
,
9分
因為
,所以
,
又
,![]()
故![]()
11分
令
,因為
,即
,
所以![]()
![]()
所以
13分
綜上所述:
. 14分
考點:直線與橢圓位置關(guān)系
點評:主要是考查了直線與圓的位置關(guān)系的運(yùn)用屬于基礎(chǔ)題。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
四邊形ABCD的四個頂點都在拋物線
上,A,C關(guān)于
軸對稱,BD平行于拋物線在點C處的切線。
(Ⅰ)證明:AC平分
;
(Ⅱ)若點A坐標(biāo)為
,四邊形ABCD的面積為4,求直線BD的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,設(shè)拋物線
的焦點為
,且其準(zhǔn)線與
軸交于
,以
,
為焦點,離心率
的橢圓
與拋物線
在
軸上方的一個交點為P.![]()
(1)當(dāng)
時,求橢圓
的方程;
(2)是否存在實數(shù)
,使得
的三條邊的邊長是連續(xù)的自然數(shù)?若存在,求出這樣的實數(shù)
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓![]()
(a>b>0)拋物線![]()
,從每條曲線上取兩個點,將其坐標(biāo)記錄于下表中:![]()
| 4 | 1 | |||
| 2 | 4 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知曲線
,曲線
,P是平面上一點,若存在過點P的直線與
都有公共點,則稱P為“C1—C2型點”.![]()
(1)在正確證明
的左焦點是“C1—C2型點”時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
(2)設(shè)直線
與
有公共點,求證
,進(jìn)而證明原點不是“C1—C2型點”;
(3)求證:圓
內(nèi)的點都不是“C1—C2型點”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的中心在原點,焦點在
軸上.若橢圓上的點
到焦點
、
的距離之和等于4.
(1)寫出橢圓
的方程和焦點坐標(biāo).
(2)過點
的直線與橢圓交于兩點
、
,當(dāng)
的面積取得最大值時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓
:
的左、右焦點分別是
,離心率為
,過
且垂直于
軸的直線被橢圓
截得的線段長為
。
(Ⅰ)求橢圓
的方程;
(Ⅱ)點
是橢圓
上除長軸端點外的任一點,連接
,設(shè)
的角平分線
交
的長軸于點
,求
的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,過點
作斜率為
的直線
,使
與橢圓
有且只有一個公共點,設(shè)直線的
斜率分別為
。若
,試證明
為定值,并求出這個定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的一個頂點為A(0,-1),焦點在x軸上.若右焦點到直線
的距離為3.
(1)求橢圓的方程;
(2)設(shè)橢圓與直線
相交于不同的兩點M、N.當(dāng)
時,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓
的左焦點為
,過點
的直線交橢圓于
兩點,線段
的中點為
,
的中垂線與
軸和
軸分別交于
兩點.![]()
(1)若點
的橫坐標(biāo)為
,求直線
的斜率;
(2)記△
的面積為
,△
(
為原點)的面積為
.試問:是否存在直線
,使得
?說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com