【題目】共享單車的推廣給消費(fèi)者帶來全新消費(fèi)體驗(yàn),迅速贏得廣大消費(fèi)者的青睞,然而,同時(shí)也暴露出管理、停放、服務(wù)等方面的問題,為了了解公眾對共享單車的態(tài)度(提倡或不提倡),某調(diào)查小組隨機(jī)地對不同年齡段50人進(jìn)行調(diào)查,將調(diào)查情況整理如下表:
![]()
并且,年齡在
和
的人中持“提倡”態(tài)度的人數(shù)分別為5和3,現(xiàn)從這兩個(gè)年齡段中隨機(jī)抽取2人征求意見.
(Ⅰ)求年齡在
中被抽到的2人都持“提倡”態(tài)度的概率;
(Ⅱ)求年齡在
中被抽到的2人至少1人持“提倡”態(tài)度的概率.
【答案】(1)
;(2)
.
【解析】試題分析:(1)年齡在[20,25)中共有6人,其中持“提倡”態(tài)度的人數(shù)為5,其中抽兩人,基本事件總數(shù)n=15,被抽到的2人都持“提倡”態(tài)度包含的基本事件個(gè)數(shù)m=10,由此能求出年齡在[20,25)中被抽到的2人都持“提倡”態(tài)度的概率.(2)年齡在[40,45)中共有5人,其中持“提倡”態(tài)度的人數(shù)為3,其中抽兩人,基本事件總數(shù)n′=10,年齡在[40,45)中被抽到的2人至少1人持“提倡”態(tài)度包含的基本事件個(gè)數(shù)m′=9,由此能求出年齡在[40,45)中被抽到的2人至少1人持“提倡”態(tài)度的概率.
解析:
(1)設(shè)在
中的6人持“提倡”態(tài)度的為
,
,
,
,
,持“不提倡”態(tài)度的為
.
總的基本事件有(
),(
),(
),(
),(
),(
),(
),(
),(
),(
),(
),(
),(
),(
),(
).共15個(gè),其中兩人都持“提倡”態(tài)度的有10個(gè),
所以P=
=![]()
(2)設(shè)在
中的5人持“提倡”態(tài)度的為
,
,
,持“不提倡”態(tài)度的為
,
.
總的基本事件有(
),(
),(
),(
),(
),(
),(
),(
),(
),(
),共10個(gè),其中兩人都持“不提倡”態(tài)度的只有(
)一種,所以P=
=![]()
【題型】解答題
【結(jié)束】
22
【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,已知圓
的極坐標(biāo)方程為
,直線
的參數(shù)方程為
(
為參數(shù)),若
與
交于
兩點(diǎn).
(Ⅰ)求圓
的直角坐標(biāo)方程;
(Ⅱ)設(shè)
,求
的值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0(t∈R)的圖形是圓.
(1)求t的取值范圍;
(2)求圓的面積取最大值時(shí)t的值;
(3)若點(diǎn)P(3,4t2)恒在所給圓內(nèi),求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖C,D是以AB為直徑的圓上的兩點(diǎn),
,F是AB上的一點(diǎn),且
,將圓沿AB折起,使點(diǎn)C在平面ABD的射影E在BD上,已知![]()
![]()
![]()
(1)求證:AD
平面BCE
(2)求證:AD//平面CEF;
(3)求三棱錐A-CFD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在棱長為2的正方體
中,
分別為
和
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)在棱
上是否存在一點(diǎn)
,使得二面角
的大小為
,若存在,求出
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知
是奇函數(shù),求常數(shù)m的值;
(2)畫出函數(shù)
的圖象,并利用圖象回答:k為何值時(shí),方程
無解?有一解?有兩解?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式|x﹣3|+|x﹣m|≥2m的解集為R. (Ⅰ)求m的最大值;
(Ⅱ)已知a>0,b>0,c>0,且a+b+c=m,求4a2+9b2+c2的最小值及此時(shí)a,b,c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
是公差不為0的等差數(shù)列,
且
成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)
,求數(shù)列
的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,若f(x)=(x+
)ex在區(qū)間(0,1)上只有一個(gè)極值點(diǎn),則a的取值范圍為( )
A.a>0
B.a≤1
C.a>1
D.a≤0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系
中,點(diǎn)
,直線
,設(shè)圓
的半徑為1, 圓心在
上.
![]()
(1)若圓心
也在直線
上,過點(diǎn)
作圓
的切線,求切線方程;
(2)若圓
上存在點(diǎn)
,使
,求圓心
的橫坐標(biāo)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com