【題目】已知
,(其中常數(shù)
).
(1)當(dāng)
時(shí),求函數(shù)
的極值;
(2)若函數(shù)
有兩個(gè)零點(diǎn)
,求證:
.
【答案】(1)
有極小值
,無(wú)極大值;(2)證明見(jiàn)解析.
【解析】
(1)求出a=e的函數(shù)的導(dǎo)數(shù),求出單調(diào)區(qū)間,即可求得極值;(2)先證明:當(dāng)f(x)≥0恒成立時(shí),有 0<a≤e成立.若
,則f(x)=ex﹣a(lnx+1)≥0顯然成立;若
,運(yùn)用參數(shù)分離,構(gòu)造函數(shù)通過(guò)求導(dǎo)數(shù),運(yùn)用單調(diào)性,結(jié)合函數(shù)零點(diǎn)存在定理,即可得證.
函數(shù)
的定義域?yàn)?/span>
,
(1)當(dāng)
時(shí),
,
,
在
單調(diào)遞增且![]()
當(dāng)
時(shí),
,所以
在
上單調(diào)遞減;
當(dāng)
時(shí),
,則
在
上單調(diào)遞增,
所以
有極小值
,無(wú)極大值.
(2)先證明:當(dāng)
恒成立時(shí),有
成立
若
,則
顯然成立;
若
,由
得
,令
,則
,
令
,由
得
在
上單調(diào)遞增,
又∵
,所以
在
上為負(fù),遞減,在
上為正,遞增,∴
,從而
.
因而函數(shù)
若有兩個(gè)零點(diǎn),則
,所以
,
由
得
,則
,
∴
在
上單調(diào)遞增,∴
,
∴
在
上單調(diào)遞增∴
,則![]()
∴
,由
得
,
則
,∴
,綜上
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程是
(
為參數(shù)),把曲線
橫坐標(biāo)縮短為原來(lái)的
,縱坐標(biāo)縮短為原來(lái)的一半,得到曲線
,直線
的普通方程是
,以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系;
(1)求直線
的極坐標(biāo)方程和曲線
的普通方程;
(2)記射線
與
交于點(diǎn)
,與
交于點(diǎn)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求不等式
的解集;
(2)若直線
與
的圖象所圍成的多邊形面積為
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年?yáng)|京夏季奧運(yùn)會(huì)將設(shè)置
米男女混合泳接力這一新的比賽項(xiàng)目,比賽的規(guī)則是:每個(gè)參賽國(guó)家派出2男2女共計(jì)4名運(yùn)動(dòng)員參加比賽,按照仰泳
蛙泳
蝶泳
自由泳的接力順序,每種泳姿100米且由1名運(yùn)動(dòng)員完成,且每名運(yùn)動(dòng)員都要出場(chǎng),若中國(guó)隊(duì)確定了備戰(zhàn)該項(xiàng)目的4名運(yùn)動(dòng)員名單,其中女運(yùn)動(dòng)員甲只能承擔(dān)仰泳或者自由泳,男運(yùn)動(dòng)員乙只能承擔(dān)蝶泳或者自由泳,剩下的2名運(yùn)動(dòng)員四種泳姿都可以承擔(dān),則中國(guó)隊(duì)的排兵布陣的方式共有( )
A. 144種B. 24種C. 12種D. 6種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐
中,
菱形
所在的平面,
是
中點(diǎn),
是
上的點(diǎn).
(1)求證:平面
平面
;
(2)若
是
的中點(diǎn),當(dāng)
時(shí),是否存在點(diǎn)
,使直線
與平面
的所成角的正弦值為
?若存在,請(qǐng)求出
的值,若不存在,請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱(chēng)為該橢圓的“特征三角形”.如果兩個(gè)橢圓的“特征三角形”是相似的,則稱(chēng)這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱(chēng)為橢圓的相似比.已知橢圓
.
(1)若橢圓
,判斷
與
是否相似?如果相似,求出
與
的相似比;如果不相似,請(qǐng)說(shuō)明理由;
(2)寫(xiě)出與橢圓
相似且短半軸長(zhǎng)為
的橢圓
的方程;若在橢圓
上存在兩點(diǎn)
、
關(guān)于直線
對(duì)稱(chēng),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示為一正方體的平面展開(kāi)圖,在這個(gè)正方體中,有下列四個(gè)命題:
①AF⊥GC;
②BD與GC成異面直線且?jiàn)A角為60;
③BD∥MN;
④BG與平面ABCD所成的角為45.
其中正確的個(gè)數(shù)是( )
![]()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于
的方程組
的系數(shù)矩陣記為
,且該方程組存在非零解,若存在三階矩陣
,使得
,(0表示零矩陣,即所有元素均為0的矩陣;矩陣
對(duì)應(yīng)的行列式為
),則
(1)
一定為1;
(2)
一定為0;
(3)該方程組一定有無(wú)窮多解.
其中正確說(shuō)法的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P-ABC中,平面
平面ABC,
,
.
![]()
(1)若
,求證:平面
平面PBC;
(2)若PA與平面ABC所成的角為
,求二面角C-PB-A的余弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com