【題目】2020年東京夏季奧運(yùn)會將設(shè)置
米男女混合泳接力這一新的比賽項(xiàng)目,比賽的規(guī)則是:每個參賽國家派出2男2女共計4名運(yùn)動員參加比賽,按照仰泳
蛙泳
蝶泳
自由泳的接力順序,每種泳姿100米且由1名運(yùn)動員完成,且每名運(yùn)動員都要出場,若中國隊確定了備戰(zhàn)該項(xiàng)目的4名運(yùn)動員名單,其中女運(yùn)動員甲只能承擔(dān)仰泳或者自由泳,男運(yùn)動員乙只能承擔(dān)蝶泳或者自由泳,剩下的2名運(yùn)動員四種泳姿都可以承擔(dān),則中國隊的排兵布陣的方式共有( )
A. 144種B. 24種C. 12種D. 6種
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)討論函數(shù)
的單調(diào)性;
(2)若
,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐
(如圖1)的平面展開圖(如圖2)中,四邊形
為邊長為
的正方形,
,
均為正三角形,在三棱錐
中.
![]()
(1)求證:平面
平面
;
(2)若點(diǎn)
在棱
上,滿足
,
,點(diǎn)
在棱
上,且
,求
得取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓
經(jīng)過點(diǎn)
,且點(diǎn)
到橢圓的兩焦點(diǎn)的距離之和為
.
(l)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若
是橢圓
上的兩個點(diǎn),線段
的中垂線
的斜率為
且直線
與
交于點(diǎn)
,
為坐標(biāo)原點(diǎn),求證:
三點(diǎn)共線.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,(其中常數(shù)
).
(1)當(dāng)
時,求函數(shù)
的極值;
(2)若函數(shù)
有兩個零點(diǎn)
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,若方程
有四個不等實(shí)根
,時,不等式
恒成立,則實(shí)數(shù)
的最小值為()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓
(
)的左、右焦點(diǎn)分別為
,過
的直線交橢圓于
,
兩點(diǎn),若橢圓
的離心率為
,
的周長為
.
(1)求橢圓
的方程;
(2)設(shè)不經(jīng)過橢圓的中心而平行于弦
的直線交橢圓
于點(diǎn)
,
,設(shè)弦
,
的中點(diǎn)分別為
,證明:
三點(diǎn)共線.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com