如圖(1),在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分別是AC,AB上的點(diǎn),CD=BE=
,O為BC的中點(diǎn).將△ADE沿DE折起,得到如圖(2)所示的四棱錐
,其中
.
(Ⅰ)證明:
平面BCDE;
(Ⅱ)求二面角
的平面角的余弦值.
(Ⅰ)在圖(1)中,易得![]()
連結(jié)
,在
中,由余弦定理可得
![]()
由翻折不變性可知
,
所以
,所以
,
理可證
,又
,所以
平面
.
(Ⅱ)傳統(tǒng)法:過
作
交
的延長線于
,連結(jié)
,
因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60R0/0768/0018/bd9acfbed81a376c991810dfb3eccf10/C/Image102.gif" width=45 height=18>平面
,所以
,
所以
為二面角
的平面角.
結(jié)合圖1可知,
為
中點(diǎn),故
,從而![]()
所以
,所以二面角
的平面角的余弦值為
.
向量法:以O(shè)點(diǎn)為原點(diǎn),建立空間直角坐標(biāo)系O-xyz如圖所示,
![]()
則
,
,![]()
所以
,![]()
設(shè)
為平面
的法向量,則
,即
,解得
,令
,得![]()
由(Ⅰ)知,
為平面
的一個(gè)法向量,
所以
,即二面角
的平面角的余弦值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013年湖南省長沙市高考模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起,
使得△ABD與△ABC成直二面角
,如圖二,在二面角
中.
![]()
(1)求證:BD⊥AC;
(2)求D、C之間的距離;
(3)求DC與面ABD成的角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省泉州市高三畢業(yè)班質(zhì)量檢查理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)
如圖1,在等腰梯形
中,
,
,
,
為
上一點(diǎn),
,且
.將梯形
沿
折成直二面角
,如圖2所示.
![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)設(shè)點(diǎn)
關(guān)于點(diǎn)
的對(duì)稱點(diǎn)為
,點(diǎn)
在
所在平面內(nèi),且直線
與平面
所成的角為
,試求出點(diǎn)
到點(diǎn)
的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期2月月考理科數(shù)學(xué)試卷 題型:解答題
(本題滿分14分) 如圖(1)在等腰
中,D,E,F(xiàn)分別是AB,AC和BC邊的中點(diǎn),
,現(xiàn)將
沿CD翻折成直二面角A-DC-B.(如圖(2))
![]()
(I)試判斷直線AB與平面DEF的位置關(guān)系,并說明理由;
(II)求二面角E-DF-C的余弦值;
(III)在線段BC是否存在一點(diǎn)P,但AP
DE?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江西省上饒市、德興一中等高二四校聯(lián)考數(shù)學(xué)試卷 題型:解答題
如圖(1)在等腰
中,D,E,F(xiàn)分別是AB,AC和BC邊的中點(diǎn),
,
現(xiàn)將
沿CD翻折成直二面角A-DC-B.(如圖(2))
(I)試判斷直線AB與平面DEF的位置關(guān)系,
并說明理由;(II).求二面角E-DF-C的余弦值;
(III)在線段BC是否存在一點(diǎn)P,但AP
DE?證明你的結(jié)論.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com