【題目】已知橢圓
的左、右焦點(diǎn)分別為
,
,以
為圓心過(guò)橢圓左頂點(diǎn)
的圓與直線
相切于
,且滿足
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓
右焦點(diǎn)
的直線
與橢圓
交于不同的兩點(diǎn)
,
,問(wèn)
內(nèi)切圓面積是否有最大值?若有,求出最大值;若沒(méi)有,說(shuō)明理由.
【答案】(1)
;(2)有,最大值![]()
【解析】
(1)由已知可得
到直線
的距離等于
,結(jié)合
,建立
方程組,求解即可得出橢圓
的標(biāo)準(zhǔn)方程;
(2)即求
內(nèi)切圓的半徑
是否有最大值,因?yàn)?/span>
周長(zhǎng)為
,轉(zhuǎn)化為
的面積是否有最大值,設(shè)
,則
,再設(shè)出直線
的方程為
,與橢圓方程聯(lián)立,得出
關(guān)系,
表示為
的函數(shù),根據(jù)其特征求出范圍,即可得出結(jié)論.
(1)由已知橢圓
方程為
,
設(shè)橢圓右焦點(diǎn)
,由
到直線
的距離等于
,
得
,
,
又
,
,
又
,求得
,
.
橢圓
方程為
,
![]()
(2)設(shè)
,
,設(shè)
的內(nèi)切圓半徑為
,
的周長(zhǎng)為
,
所以
,
根據(jù)題意,直線
的斜率不為零,可設(shè)直線
的方程為
,
由
,得
,
,
,
,
,
所以
,
令
,則
,所以
,
令
,則當(dāng)
時(shí),
,
單調(diào)遞增,所以
,
,
即當(dāng)
,
,直線
的方程為
時(shí),
的最大值為3,此時(shí)內(nèi)切圓半徑最大
,
內(nèi)切圓面積有最大值
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知無(wú)窮數(shù)列
的前
項(xiàng)中的最大項(xiàng)為
,最小項(xiàng)為
,設(shè)
.
(1)若
,求數(shù)列
的通項(xiàng)公式;
(2)若
,求數(shù)列
的前
項(xiàng)和
;
(3)若數(shù)列
是等差數(shù)列,求證:數(shù)列
是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線
:
與曲線
:
交于
,
兩點(diǎn),且
的周長(zhǎng)為
.
(Ⅰ)求曲線
的方程.
(Ⅱ)設(shè)過(guò)曲線
焦點(diǎn)
的直線
與曲線
交于
,
兩點(diǎn),記直線
,
的斜率分別為
,
.求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線
:
的焦點(diǎn)為
,直線
與拋物線
交于
,
兩點(diǎn).
(1)若
過(guò)點(diǎn)
,證明:
;
(2)若
,點(diǎn)
在曲線
上,
,
的中點(diǎn)均在拋物線
上,求
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線
,不與
軸垂直的直線
與雙曲線右支交于點(diǎn)
,
,(
在
軸上方,
在
軸下方),與雙曲線漸近線交于點(diǎn)
,
(
在
軸上方),
為坐標(biāo)原點(diǎn),下列選項(xiàng)中正確的為( )
A.
恒成立
B.若
,則![]()
C.
面積的最小值為1
D.對(duì)每一個(gè)確定的
,若
,則
的面積為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知
為拋物線
上一點(diǎn),斜率分別為
,![]()
的直線PA,PB分別交拋物線于點(diǎn)A,B(不與點(diǎn)P重合).
![]()
(1)證明:直線AB的斜率為定值;
(2)若△ABP的內(nèi)切圓半徑為
.
(i)求△ABP的周長(zhǎng)(用k表示);
(ii)求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)唐代天文學(xué)家、數(shù)學(xué)家張逐曾以“李白喝酒”為題編寫(xiě)了如下一道題:“李白街上走,提壺去買酒,遇店加一倍,見(jiàn)花喝一斗(計(jì)量單位),三遇店和花,喝光壺中酒.”問(wèn)最后一次遇花時(shí)有酒________斗,原有酒________斗.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線
與橢圓
交于
兩點(diǎn),且
(其中
為坐標(biāo)原點(diǎn)),若橢圓的離心率
滿足
,則橢圓長(zhǎng)軸的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
,
.
(1)討論
在
上的單調(diào)性;
(2)當(dāng)
時(shí),若存在正實(shí)數(shù)
,使得對(duì)
,都有
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com