已知圓M經(jīng)過直線

與圓

的交點,且圓M的圓心到直線

的距離為

,求圓M的方程.
x
2+y
2-20x-15y-43=0或x
2+y
2+28x+9y+53=0
解:設經(jīng)過直線l與圓C的交點的圓系方程為x
2+y
2+2x-4y+1+

(2x+y+4 )=0
則x
2+y
2+2(

+1)+ (

-4)y+4

+1=0
∴圓M的圓心為M(

)………………………3分
由條件可得

=

…………………………6分
解得

=-11或

=13 …………………………8分
所以所求圓的方程為x
2+y
2-20x-15y-43=0或x
2+y
2+28x+9y+53=0 ……………10分
本試題主要是考查了直線方程與圓的方程的求解。
設經(jīng)過直線l與圓C的交點的圓系方程為x
2+y
2+2x-4y+1+

(2x+y+4 )=0
則x
2+y
2+2(

+1)+ (

-4)y+4

+1=0
然后利用圓M的圓心為M(

)則由條件圓心到直線

的距離為

,得到

的值,從而得到圓的方程。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:填空題
與圓

相切,且在兩坐標軸上截距相等的直線共有
條.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
過兩圓:x
2 + y
2 + 6 x + 4y = 0及x
2+y
2 + 4x + 2y – 4 =0的交點的直線的方程
| A.x+y+2=0 | B.x+y-2="0" |
| C.5x+3y-2=0 | D.不存在 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知圓

,過點A(1,0)與圓

相切的直線方程為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
以坐標軸為對稱軸,以原點為頂點且過圓

的圓心的拋物線的方程是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
如圖所示,已知圓

,

為定點,

為圓

上的動點,線段

的垂直平分線交

于點

,點

的軌跡為曲線E.
(Ⅰ)求曲線

的方程;
(Ⅱ)過點

作直線

交曲線

于

兩點,設線段

的中垂線交

軸于點

,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
( 本小題滿分14)
已知點A(-4,-5),B(6,-1),求以線段AB為直徑的圓的方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
圓

:

上有兩個相異的點到直線

的距離為都為

,則

的取值范圍是
查看答案和解析>>