【題目】過點M(0,1)的直線l交橢圓C:
于A,B兩點,F(xiàn)1為橢圓的左焦點,當(dāng)△ABF1周長最大時,直線l的方程為 .
【答案】x+2y﹣2=0
【解析】解:設(shè)右焦點為F2(2,0),則AF1=6﹣AF2,BF1=6﹣BF2,
所以AF1+BF1+AB
=12+AB﹣(AF2+BF2),
顯然AF2+BF2≥AB,
當(dāng)且僅當(dāng)A,B,F(xiàn)2共線時等號成立,
所以當(dāng)直線l過點F2時,△ABF1的周長取最大值12,
此時直線方程為
=
,即x+2y﹣2=0.
所以答案是:x+2y﹣2=0
【考點精析】通過靈活運用橢圓的概念,掌握平面內(nèi)與兩個定點
,
的距離之和等于常數(shù)(大于
)的點的軌跡稱為橢圓,這兩個定點稱為橢圓的焦點,兩焦點的距離稱為橢圓的焦距即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知多面體
的底面
是邊長為2的菱形,
底面
,
,且
.
![]()
(1)證明:平面
平面
;
(2)若直線
與平面
所成的角為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(0,+∞)時,f(x)=2018x+log2018x,則函數(shù)f(x)的零點個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,(其中
)的圖象與x軸的交點中,相鄰兩個交點之間的距離為
,且圖象上一個最低點為
.
(Ⅰ)求
的解析式;
(Ⅱ)當(dāng)
,求
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于空間兩不同的直線
,兩不同的平面
,有下列推理:
(1)
, (2)
,(3)
(4)
, (5)
其中推理正確的序號為( )
A. (1)(3)(4) B. (2)(3)(5) C. (4)(5) D. (2)(3)(4)(5)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
:
,直線
:
.
(1)設(shè)點
是直線
上的一動點,過
點作圓
的兩條切線,切點分別為
,求四邊形
的面積的最小值;
(2)過
作直線
的垂線交圓
于
點,
為
關(guān)于
軸的對稱點,若
是圓
上異于
的兩個不同點,且滿足:
,試證明直線
的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,函數(shù)
.
(1)當(dāng)
時,證明
是奇函數(shù);
(2)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(3)當(dāng)
時,求函數(shù)
在
上的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com