【題目】如圖,在四面體
中,已知
,
,
![]()
(1)求證:
;
(2)若平面
平面
,且
,求二面角
的余弦值.
【答案】(1)見解析;(2)
.
【解析】
試題分析:(1)利用
得出
,取
的中點(diǎn)
,連結(jié)
,
,則
,
,得出
平面
,即可得證
;(2)過
作
于點(diǎn)
,由平面
平面
,推出
平面
,過
做
于點(diǎn)
,連接
,得出
,得證
平面
,得出
,從而可得
為二面角
的平面角,連接
,則
,由
,
,得出
,
,再由
,
,得出
,從而求出
,即可求出二面角
的余弦值
試題解析:(1)證明:∵
,
,
.
∴
,
∴
.
取
的中點(diǎn)
,連結(jié)
,
,則
,
.
又∵
,
平面
,
平面
,
∴
平面
,
∴
.
![]()
(2)解:過
作
于點(diǎn)
.則
平面
,
又∵平面
平面
,平面
平面
,
∴
平面
.
過
做
于點(diǎn)
,連接
.
∵
平面![]()
∴![]()
又
,
∴
平面![]()
∴
.
∴
為二面角
的平面角.
連接
.
∵![]()
∴
.
∵
,
,
∴
,
.
∵
,
.
∴![]()
∴
.
∴![]()
∴![]()
∴二面角
的余弦值為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】徐州、蘇州兩地相距500千米,一輛貨車從徐州勻速行駛到蘇州,規(guī)定速度不得超過100千米/小時(shí).已知貨車每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(千米/時(shí))的平方成正比,比例系數(shù)為0.01;固定部分為
元(
>0).
(1)把全程運(yùn)輸成本y(元)表示為速度v(千米/時(shí))的函數(shù),并指出這個(gè)函數(shù)的定義域;
(2)為了使全程運(yùn)輸成本最小,汽車應(yīng)以多大速度行駛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的右焦點(diǎn)為
,設(shè)過
的直線
的斜率存在且不為0,直線
交橢圓于
,
兩點(diǎn),若
中點(diǎn)為
,
為原點(diǎn),直線
交
于點(diǎn)
.
(1)求證:
;
(2)求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P是圓
上一動點(diǎn),
x軸于點(diǎn)D.記滿足
的動點(diǎn)M的軌跡為Γ.
(1)求軌跡Γ的方程;
(2)已知直線
與軌跡Γ交于不同兩點(diǎn)A,B,點(diǎn)G是線段AB中點(diǎn),射線OG交軌跡Γ于點(diǎn)Q,且
.
①證明:![]()
②求△AOB的面積S(λ)的解析式,并計(jì)算S(λ)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD為正方形,
為直角三角形,
,且
.
![]()
(1)證明:平面
平面
;
(2)若AB=2AE,求異面直線BE與AC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)構(gòu)組織語文、數(shù)學(xué)學(xué)科能力競賽,按照一定比例淘汰后,頒發(fā)一二三等獎(jiǎng).現(xiàn)有某考場的兩科考試成績數(shù)據(jù)統(tǒng)計(jì)如下圖所示,其中數(shù)學(xué)科目成績?yōu)槎泉?jiǎng)的考生有
人.
![]()
![]()
(Ⅰ)求該考場考生中語文成績?yōu)橐坏泉?jiǎng)的人數(shù);
(Ⅱ)用隨機(jī)抽樣的方法從獲得數(shù)學(xué)和語文二等獎(jiǎng)的學(xué)生中各抽取
人,進(jìn)行綜合素質(zhì)測試,將他們的綜合得分繪成莖葉圖,求樣本的平均數(shù)及方差并進(jìn)行比較分析;
(Ⅲ)已知本考場的所有考生中,恰有
人兩科成績均為一等獎(jiǎng),在至少一科成績?yōu)橐坏泉?jiǎng)的考生中,隨機(jī)抽取
人進(jìn)行訪談,求兩人兩科成績均為一等獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)當(dāng)
時(shí),求不等式
的解集;
(2)若不等式
的解集包含[–1,1],求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著共享單車的成功運(yùn)營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨即抽取
人對共享產(chǎn)品是否對日常生活有益進(jìn)行了問卷調(diào)查,并對參與調(diào)查的
人中的性別以及意見進(jìn)行了分類,得到的數(shù)據(jù)如下表所示:
男 | 女 | 總計(jì) | |
認(rèn)為共享產(chǎn)品對生活有益 |
|
|
|
認(rèn)為共享產(chǎn)品對生活無益 |
|
|
|
總計(jì) |
|
|
|
(1)根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過
的前提下,認(rèn)為對共享產(chǎn)品的態(tài)度與性別有關(guān)系?
(2)現(xiàn)按照分層抽樣從認(rèn)為共享產(chǎn)品增多對生活無益的人員中隨機(jī)抽取
人,再從
人中隨機(jī)抽取
人贈送超市購物券作為答謝,求恰有
人是女性的概率.
參與公式: ![]()
臨界值表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列
滿足
,且
是
的等差中項(xiàng).
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)若
,對任意正數(shù)數(shù)
,
恒成立,試求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com