【題目】已知實(shí)數(shù)a、b滿足:a>0,b>0.
(1)若x∈R,求證:|x+a|+|x﹣b|≥2
.
(2)若a+b=1,求證:
+
+
≥12.
【答案】
(1)證明:由a>0,b>0,可得
|x+a|+|x﹣b|≥|(x+a)﹣(x﹣b)|=a+b≥2
,
當(dāng)且僅當(dāng)a=b取得等號(hào)
(2)證明:由a,b>0,1=a+b≥2
,
可得ab≤
,即
≥4,
則
+
+
=
+
=
≥12,
當(dāng)且僅當(dāng)a=b=
,取得等號(hào)
【解析】(1)運(yùn)用絕對(duì)值不等式的性質(zhì)和均值不等式,即可得證;(2)由均值不等式可得ab≤
,即
≥4,原不等式左邊化簡即為
,即可得證.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解不等式的證明的相關(guān)知識(shí),掌握不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構(gòu)造法,函數(shù)單調(diào)性法,數(shù)學(xué)歸納法等.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小王每天自己開車上班,他在路上所用的時(shí)間
(分鐘)與道路的擁堵情況有關(guān).小王在一年中隨機(jī)記錄了200次上班在路上所用的時(shí)間,其頻數(shù)統(tǒng)計(jì)如下表,用頻率近似代替概率.
| 15 | 20 | 25 | 30 |
頻數(shù)(次) | 50 | 50 | 60 | 40 |
(Ⅰ)求小王上班在路上所用時(shí)間的數(shù)學(xué)期望
;
(Ⅱ)若小王一周上班5天,每天的道路擁堵情況彼此獨(dú)立,設(shè)一周內(nèi)上班在路上所用時(shí)間不超過
的天數(shù)為
,求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(x0 , 0),B(0,y0)兩點(diǎn)分別在x軸和y軸上運(yùn)動(dòng),且|AB|=1,若動(dòng)點(diǎn)P(x,y)滿足
.
(1)求出動(dòng)點(diǎn)P的軌跡對(duì)應(yīng)曲線C的標(biāo)準(zhǔn)方程;
(2)一條縱截距為2的直線l1與曲線C交于P,Q兩點(diǎn),若以PQ直徑的圓恰過原點(diǎn),求出直線方程;
(3)直線l2:x=ty+1與曲線C交于A、B兩點(diǎn),E(1,0),試問:當(dāng)t變化時(shí),是否存在一直線l2 , 使△ABE的面積為
?若存在,求出直線l2的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公比小于1的等比數(shù)列{an}的前n項(xiàng)和為Sn , a1=
,且13a2=3S3(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3(1﹣Sn+1),若
+
+…+
=
,求n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個(gè)定點(diǎn)
,動(dòng)點(diǎn)
滿足
.設(shè)動(dòng)點(diǎn)
的軌跡為曲線
,直線
.
(1)求曲線
的軌跡方程;
(2)若
與曲線
交于不同的
兩點(diǎn),且
(
為坐標(biāo)原點(diǎn)),求直線
的斜率;
(3)若
,
是直線
上的動(dòng)點(diǎn),過
作曲線
的兩條切線
,切點(diǎn)為
,探究:直線
是否過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線
﹣
=1(a>0,b>0)的左焦點(diǎn)為F,離心率為
.若經(jīng)過F和P(0,4)兩點(diǎn)的直線平行于雙曲線的一條漸近線,則雙曲線的方程為( 。
A.![]()
=1
B.![]()
=1
C.![]()
=1
D.![]()
=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2x,過點(diǎn)(2,0)的直線l交C與A,B兩點(diǎn),圓M是以線段AB為直徑的圓.
(Ⅰ)證明:坐標(biāo)原點(diǎn)O在圓M上;
(Ⅱ)設(shè)圓M過點(diǎn)P(4,﹣2),求直線l與圓M的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在同一個(gè)平面內(nèi),向量
,
,
的模分別為1,1,
,
與
的夾角為α,且tanα=7,
與
的夾角為45°.若
=m
+n
(m,n∈R),則m+n= . ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com