【題目】已知雙曲線(xiàn)
﹣
=1(a>0,b>0)的左焦點(diǎn)為F,離心率為
.若經(jīng)過(guò)F和P(0,4)兩點(diǎn)的直線(xiàn)平行于雙曲線(xiàn)的一條漸近線(xiàn),則雙曲線(xiàn)的方程為( 。
A.![]()
=1
B.![]()
=1
C.![]()
=1
D.![]()
=1
【答案】B
【解析】解:設(shè)雙曲線(xiàn)的左焦點(diǎn)F(﹣c,0),離心率e=
=
,c=
a,
則雙曲線(xiàn)為等軸雙曲線(xiàn),即a=b,
雙曲線(xiàn)的漸近線(xiàn)方程為y=±
x=±x,
則經(jīng)過(guò)F和P(0,4)兩點(diǎn)的直線(xiàn)的斜率k=
=
,
則
=1,c=4,則a=b=2
,
∴雙曲線(xiàn)的標(biāo)準(zhǔn)方程:
;
故選B.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用斜率的計(jì)算公式,掌握給定兩點(diǎn)P1(x1,y1),P2(x2,y2),x1≠x2,用兩點(diǎn)的坐標(biāo)來(lái)表示直線(xiàn)P1P2的斜率:斜率公式: k=y2-y1/x2-x1即可以解答此題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,梯形ABCD內(nèi)接于⊙O,AD∥BC,過(guò)點(diǎn)C作⊙O的切線(xiàn),交BD的延長(zhǎng)線(xiàn)于點(diǎn)P,交AD的延長(zhǎng)線(xiàn)于點(diǎn)E. ![]()
(1)求證:AB2=DEBC;
(2)若BD=9,AB=6,BC=9,求切線(xiàn)PC的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)=sin(2x+φ)+
cos(2x+φ)(0<φ<π)圖象向左平移
個(gè)單位后,得到函數(shù)的圖象關(guān)于點(diǎn)(
,0)對(duì)稱(chēng),則函數(shù)g(x)=cos(x+φ)在[﹣
,
]上的最小值是( )
A.﹣ ![]()
B.﹣ ![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,
,側(cè)面
底面
.
![]()
(1)求證:平面
平面
;
(2)若
,且二面角
等于
,求直線(xiàn)
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)a、b滿(mǎn)足:a>0,b>0.
(1)若x∈R,求證:|x+a|+|x﹣b|≥2
.
(2)若a+b=1,求證:
+
+
≥12.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,雙曲線(xiàn)
=1(a>0,b>0)的右支與焦點(diǎn)為F的拋物線(xiàn)x2=2py(p>0)交于A,B兩點(diǎn),若|AF|+|BF|=4|OF|,則該雙曲線(xiàn)的漸近線(xiàn)方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓E:
=1(a>b>0)的離心率為
,焦距為2.(14分)
(Ⅰ)求橢圓E的方程.
(Ⅱ)如圖,該直線(xiàn)l:y=k1x﹣
交橢圓E于A,B兩點(diǎn),C是橢圓E上的一點(diǎn),直線(xiàn)OC的斜率為k2 , 且看k1k2=
,M是線(xiàn)段OC延長(zhǎng)線(xiàn)上一點(diǎn),且|MC|:|AB|=2:3,⊙M的半徑為|MC|,OS,OT是⊙M的兩條切線(xiàn),切點(diǎn)分別為S,T,求∠SOT的最大值,并求取得最大值時(shí)直線(xiàn)l的斜率.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】幾位大學(xué)生響應(yīng)國(guó)家的創(chuàng)業(yè)號(hào)召,開(kāi)發(fā)了一款應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng).這款軟件的激活碼為下面數(shù)學(xué)問(wèn)題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項(xiàng)是20 , 接下來(lái)的兩項(xiàng)是20 , 21 , 再接下來(lái)的三項(xiàng)是20 , 21 , 22 , 依此類(lèi)推.求滿(mǎn)足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項(xiàng)和為2的整數(shù)冪.那么該款軟件的激活碼是( 。
A.440
B.330
C.220
D.110
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知袋子中放有大小和形狀相同的小球若干,其中標(biāo)號(hào)為0的小球1個(gè),標(biāo)號(hào)為1的小球1個(gè),標(biāo)號(hào)為2的小球n個(gè).若從袋子中隨機(jī)抽取1個(gè)小球,取到標(biāo)號(hào)為2的小球的概率是
.
(1)求n的值;
(2)從袋子中不放回地隨機(jī)抽取2個(gè)小球,記第一次取出的小球標(biāo)號(hào)為a,第二次取出的小球標(biāo)號(hào)為b.
①記“
”為事件A,求事件A的概率;
②在區(qū)間
內(nèi)任取2個(gè)實(shí)數(shù)
,求事件“
恒成立”的概率.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com