【題目】設(shè)f(x)是定義在R上的偶函數(shù),且f(2+x)=f(2-x),當(dāng)x∈[-2,0)時,f(x)=
-1,若關(guān)于x的方程f(x)-loga(x+2)=0(a>0且a≠1)在區(qū)間(-2,6)內(nèi)恰有4個不等的實數(shù)根,則實數(shù)a的取值范圍是( )
A.
B. (1,4)
C. (1,8) D. (8,+∞)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知多面體
的底面
是邊長為2的正方形,
底面
,
,且
.
(Ⅰ)記線段
的中點為
,在平面
內(nèi)過點
作一條直線與平面
平行,要求保留作圖痕跡,但不要求證明.
(Ⅱ)求直線
與平面
所成角的正弦值;
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}中,a2=5,S5=40.等比數(shù)列{bn}中,b1=3,b4=81,
(1)求{an}和{bn}的通項公式
(2)令cn=anbn,求數(shù)列{cn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,在四邊形ABCD中,
,
是邊長為4的正三角形,把
沿AC折起到
的位置,使得平面PAC
平面ACD,如圖乙所示,點
分別為棱
的中點.
![]()
(1)求證:
平面
;
(2)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中曲線
的方程是
,點
是
上的動點,點
滿足
(
為極點),點
的軌跡為曲線
,以極點
為原點,極軸為
軸的非負(fù)半軸建立平面直角坐標(biāo)系
,已知直線
的參數(shù)方程是
,(
為參數(shù)).
(Ⅰ)求曲線
直角坐標(biāo)方程與直線
的普通方程;
(Ⅱ)求點
到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,求函數(shù)
的極值;
(2)設(shè)函數(shù)
,求函數(shù)
的單調(diào)區(qū)間;
(3)若在區(qū)間
上不存在
,使得
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市初三畢業(yè)生參加中考要進(jìn)行體育測試,某實驗中學(xué)初三(8)班的一次體育測試成績的莖葉圖和頻率分布直方圖都受到不同程度的涂黑,但可見部分如圖,據(jù)此解答如下問題.
![]()
(Ⅰ)求全班人數(shù)及中位數(shù),并重新畫出頻率直方圖;
(Ⅱ)若要從分?jǐn)?shù)在
之間的成績中任取兩個學(xué)生成績分析學(xué)生得分情況,在抽取的學(xué)生中,求至少有一個分?jǐn)?shù)在
之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
.
(1)設(shè)
,討論
的單調(diào)性;
(2)若函數(shù)
在
內(nèi)存在零點,求
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),在以
為極點,
軸的正半軸為極軸的極坐標(biāo)系中,曲線
是圓心為
,半徑為1的圓.
(1)求曲線
,
的直角坐標(biāo)方程;
(2)設(shè)
為曲線
上的點,
為曲線
上的點,求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com