【題目】如圖,在直三棱柱
中,AB=BC,D、E分別為
的中點(diǎn).
![]()
(1)證明:ED為異面直線BB1與AC1的公垂線段;
(2)設(shè)AB=1,
,求二面角A1—AD—C1的大小.
【答案】(1)見(jiàn)解析;(2)60°.
【解析】試題分析:(1)設(shè)
為
中點(diǎn),連接
,先證明
是平行四邊形,再證明
平面
,從而可得
平面
,可得
與直線
與
都垂直且相交,進(jìn)而可得結(jié)論;(2)連接
作
,垂足為
,連接
,根據(jù)二面角的平面角定義可知
為二面角
的平面角,在直角三角形
中求出正切值即可得結(jié)果.
試題解析:(Ⅰ) 設(shè)O為AC中點(diǎn),連接EO,BO,則EO![]()
C1C,又C1C
B1B,所以EO
DB,EOBD為平行四邊形,ED∥OB.
∵AB=BC,∴BO⊥AC,
又平面ABC⊥平面ACC1A1,BO面ABC,故BO⊥平面ACC1A1,
∴ED⊥平面ACC1A1,BD⊥AC1,ED⊥CC1,
∴ED⊥BB1,ED為異面直線AC1與BB1的公垂線.
解:(Ⅱ)連接A1E,由AB=1,AA1=AC=
可知,A1ACC1為正方形,
∴A1E⊥AC1,又由ED⊥平面ACC1A1和ED平面ADC1知平面
ADC1⊥平面A1ACC1,∴A1E⊥平面ADC1.作EF⊥AD,垂足為F,連接A1F,則A1F⊥AD,∠A1FE為二面角A1-AD-C1的平面角.
由已知AB=
ED=1, AA1=AC=
,∴
AE=A1E=1,
EF=
=
,
tan∠A1FE=
=
,∴∠A1FE=60°.
所以二面角A1-AD-C1為60°.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】針對(duì)國(guó)家提出的延遲退休方案,某機(jī)構(gòu)進(jìn)行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:
| 支持 | 保留 | 不支持 |
|
|
|
|
|
|
|
|
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取
個(gè)人,已知從持“不支持”態(tài)度的人中抽取了
人,求
的值;
(2)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取
人看成一個(gè)總體,從這
人中任意選取
人,求
歲以下人數(shù)
的分布列和期望;
(3)在接受調(diào)查的人中,有
人給這項(xiàng)活動(dòng)打出的分?jǐn)?shù)如下:
,
,
,
,
,
,
,
,
,
,把這
個(gè)人打出的分?jǐn)?shù)看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與總體平均數(shù)之差的絕對(duì)值超過(guò)
概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
R.
(1)證明:當(dāng)
時(shí),函數(shù)
是減函數(shù);
(2)根據(jù)
的不同取值,討論函數(shù)
的奇偶性,并說(shuō)明理由;
(3)當(dāng)
,且
時(shí),證明:對(duì)任意
,存在唯一的
R,使得
,且
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=
,g(x)=x+
+a,其中a為常數(shù).
(1)若g(x)≥0的解集為{x|0<x
或x≥3},求a的值;
(2)若x1∈(0,+∞),x2∈[1,2]使f(x1)≤g(x2)求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的兩個(gè)焦點(diǎn)分別為
和
,過(guò)點(diǎn)
的直線與橢圓相交于
兩點(diǎn),且
,
。
(1)求橢圓的離心率;
(2)設(shè)點(diǎn)C與點(diǎn)A關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng),直線
上有一點(diǎn)
在
的外接圓上,求
的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(多選)某中學(xué)高一年級(jí)有20個(gè)班,每班50人;高二年級(jí)有30個(gè)班,每班45人.甲就讀于高一,乙就讀于高二.學(xué)校計(jì)劃從這兩個(gè)年級(jí)中共抽取235人進(jìn)行視力調(diào)查,下列說(shuō)法中正確的有( )
A.應(yīng)該采用分層隨機(jī)抽樣法
B.高一、高二年級(jí)應(yīng)分別抽取100人和135人
C.乙被抽到的可能性比甲大
D.該問(wèn)題中的總體是高一、高二年級(jí)的全體學(xué)生的視力
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱
中,平面
平面
,
,
分別為棱
的中點(diǎn).
![]()
(1)求證:
;
(2)求平面
與平面
所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義域?yàn)?/span>
的函數(shù)
,若同時(shí)滿(mǎn)足下列三個(gè)條件:①
;② 當(dāng)
,且
時(shí),都有
;③ 當(dāng)
,且
時(shí),都有
, 則稱(chēng)
為“偏對(duì)稱(chēng)函數(shù)”.現(xiàn)給出下列三個(gè)函數(shù):
;
;
則其中是“偏對(duì)稱(chēng)函數(shù)”的函數(shù)個(gè)數(shù)為
A.
B.
C.
D. ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com