【題目】某校從參加高二某次月考的學生中隨機抽取60名學生,將其數(shù)學成績(均為整數(shù))分成六組
后得到如右所示的部分頻率分布直方圖。觀察圖形信息,回答下列問題:
(Ⅰ)求分數(shù)在
內的頻率;
(Ⅱ)用分層抽樣的方法在分數(shù)段
的學生中抽取一個容量為6的樣本,再從該樣本中任取2人,求至多有1人在分數(shù)段
內的概率。
![]()
【答案】(1)0.3(2)![]()
【解析】試題分析:(Ⅰ)根據(jù)頻率分別直方圖的面積表示頻率,并且所以小矩形的面積之和等于
,來求
的面積,就是頻率;(Ⅱ)第一步,先跟兩個分數(shù)段的頻率
,就是兩個分數(shù)段的學生人數(shù),第二步,計算分層比,計算兩個分數(shù)段的各應抽取的人數(shù),第三步,將這所抽取到的人分別編號,然后列舉所有抽取到的組合情況,至多有1人在分數(shù)段[120,130)內組合數(shù),按古典概型計算概率.
試題解析:(Ⅰ)[120,130)內的頻率為
;…5分
(Ⅱ)由題意,[110,120)分數(shù)段的人數(shù)為60×0.15=9(人).[120,130)分數(shù)段的人數(shù)為60×0.3=18(人).
∵用分層抽樣的方法在分數(shù)段為[110,130)的學生中抽取一個容量為6的樣本,
∴需在[110,120)分數(shù)段內抽取2人,并分別記為
、
;
在[120,130)分數(shù)段內抽取4人,并分別記為
、
、
、
;
設“從樣本中任取2人,至多有1人在分數(shù)段[120,130)內”為事件A,則基本事件共有
,
共15種.
則事件A包含的基本事件有
,
共9種.
∴
.
科目:高中數(shù)學 來源: 題型:
【題目】記函數(shù)f(x)=log2(2x﹣3)的定義域為集合M,函數(shù)g(x)=
的定義域為集合N.求:
(Ⅰ)集合M,N;
(Ⅱ)集合M∩N,R(M∪N).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)
(Ⅰ)若函數(shù)在區(qū)間
上存在零點,求實數(shù)
的取值范圍;
(Ⅱ)問:是否存在常數(shù)
,當
時,
的值域為區(qū)間
,且
的長度為
.(說明:對于區(qū)間
,稱
為區(qū)間長度)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓
的右頂點為
,左、右焦點分別為
、
,過點![]()
且斜率為
的直線與
軸交于點
, 與橢圓交于另一個點
,且點
在
軸上的射影恰好為點
.
(Ⅰ)求橢圓
的標準方程;
(Ⅱ)過點
且斜率大于
的直線與橢圓交于
兩點(
),若
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)是定義在R上的增函數(shù),且對于任意的x都有f(1﹣x)+f(1+x)=0恒成立.如果實數(shù)m、n滿足不等式組
, 那么m2+n2的取值范圍是( 。
A.(3,7)
B.(9,25)
C.(13,49)
D.(9,49)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)y=sinx的圖象向右平移三個單位長度得到圖象C,再將圖象C上的所有點的橫坐標變?yōu)樵瓉淼?/span>
倍(縱坐標不變)得到圖象C1 , 則C1的函數(shù)解析式為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,曲線
在點
處的切線與直線
垂直(其中
為自然對數(shù)的底數(shù)).
(Ⅰ)求
的解析式及單調遞減區(qū)間;
(Ⅱ)若函數(shù)
無零點,求
的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com