【題目】已知橢圓
:
的左、右焦點分別為
,
,若橢圓經(jīng)過點
,且△PF1F2的面積為2.
(1)求橢圓
的標準方程;
(2)設斜率為1的直線
與以原點為圓心,半徑為
的圓交于A,B兩點,與橢圓C交于C,D兩點,且
(
),當
取得最小值時,求直線
的方程.
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形
是菱形,四邊形
是矩形,平面
平面
,
,
,
,
為
的中點,
為線段
上的一點.
![]()
(1)求證:
;
(2)若二面角
的大小為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點
為拋物線
的焦點,過點
任作兩條互相垂直的直線
,
,分別交拋物線
于
,
,
,
四點,
,
分別為
,
的中點.
(1)求證:直線
過定點,并求出該定點的坐標;
(2)設直線
交拋物線
于
,
兩點,試求
的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】陜西關中的秦腔表演樸實,粗獷,細膩,深刻,再有電子布景的獨有特效,深得觀眾喜愛.戲曲相關部門特意進行了“喜愛看秦腔”調(diào)查,發(fā)現(xiàn)年齡段與愛看秦腔的人數(shù)比存在較好的線性相關關系,年齡在
,
,
,
的愛看人數(shù)比分別是0.10,0.18,0.20,0.30.現(xiàn)用各年齡段的中間值代表年齡段,如42代表
.由此求得愛看人數(shù)比
關于年齡段
的線性回歸方程為
.那么,年齡在
的愛看人數(shù)比為( )
A.0.42B.0.39C.0.37D.0.35
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點
在橢圓
上,
、
分別為
的左、右頂點,直線
與
的斜率之積為
,
為橢圓的右焦點,直線
.
(1)求橢圓
的方程;
(2)直線
過點
且與橢圓
交于
、
兩點,直線
、
分別與直線
交于
、
兩點.試問:以
為直徑的圓是否過定點?如果是,求出定點坐標,否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省新課改后某校為預測2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計圖.
![]()
(1)根據(jù)條形統(tǒng)計圖,估計本屆高三學生本科上線率.
(2)已知該省甲市2020屆高考考生人數(shù)為4萬,假設以(1)中的本科上線率作為甲市每個考生本科上線的概率.
(i)若從甲市隨機抽取10名高三學生,求恰有8名學生達到本科線的概率(結果精確到0.01);
(ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬,假設該市每個考生本科上線率均為
,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.
可能用到的參考數(shù)據(jù):取
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足
,且
.
(1)求證:數(shù)列
是等差數(shù)列,并求出數(shù)列
的通項公式;
(2)求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,
;
若函數(shù)
在
上存在零點,求a的取值范圍;
設函數(shù)
,
,當
時,若對任意的
,總存在
,使得
,求
的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com