| 解:(1)如圖,取AC的中點(diǎn)E,連結(jié)DE、PE,則DE∥BC, 所以∠PDE(或其補(bǔ)角)為異面直線PD與BC所成的角, 因?yàn)锽C∥DE,AC⊥BC,所以AC⊥DE; 又PC⊥平面ABC,DE 因?yàn)锳C∩PC=C,所以DE⊥平面PAC, 因?yàn)镻E 在Rt△ABC中,因?yàn)锳C=BC=2,所以AB=2 在Rt△PCD中,因?yàn)镻C=2,CD= 在Rt△PDE中,因?yàn)镈E= 即異面直線PD與BC所成的角為arccos (2)因?yàn)锽C⊥AC,BC⊥PC,AC∩PC =C,所以BC⊥平面PAC,即BC⊥平面PCM, 又BC 所以平面PCM⊥平面BCM, 過點(diǎn)A作AN⊥CM交CM于N,則AN⊥平面BCM, 在Rt△PAC中,AC=PC=2,所以AP=2 又AP=4AM,所以AM= △ACM中,∠MAC=45°, 所以CM= 過M作MG⊥AC交AC于G,MG=AMsin45°= 由 所以,點(diǎn)A到平面BCM的距離為 |
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
如圖,PC⊥平面ABC,∠ACB=90°,D為AB中點(diǎn),
AC=BC=PC=2.
(Ⅰ)求證:AB⊥平面PCD;
(Ⅱ)求異面直線PD與BC所成角的大。
(Ⅲ)設(shè)M為線段PA上的點(diǎn),且AP=4AM,求點(diǎn)A到平面BCM的距離.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河北省2009-2010學(xué)年高二第四次考試(數(shù)學(xué))試題 題型:解答題
如圖,PC⊥平面ABC,∠ACB=90°,D為AB中點(diǎn),
AC=BC=PC=2.
(Ⅰ)求證:AB⊥平面PCD;
(Ⅱ)求異面直線PD與BC所成角的大小;
(Ⅲ)設(shè)M為線段PA上的點(diǎn),且AP=4AM,求點(diǎn)A到平面BCM的距離.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,PC⊥平面ABC,∠ACB=90°,D為AB中點(diǎn), AC=BC=PC=2.
(Ⅰ)求證:AB⊥平面PCD;
(Ⅱ)求異面直線PD與BC所成角的大。
(Ⅲ)設(shè)M為線段PA上的點(diǎn),且AP=4AM,求點(diǎn)A到平面BCM的距離.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,PC⊥平面ABC,∠ACB=90°,D為AB中點(diǎn),AC=BC=PC=2.
(I)求證:AB⊥平面PCD;
(II)求異面直線PD與BC所成的角的余弦值;
(III)求點(diǎn)C到平面PAD的距離.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com