【題目】設(shè)Sn是等比數(shù)列{an}的前n項(xiàng)和,S3 , S9 , S6成等差數(shù)列,且a2+a5=2am , 則m= .
【答案】8
【解析】解:∵Sn是等比數(shù)列{an}的前n項(xiàng)和,且S3 , S9 , S6成等差數(shù)列,
∴2S9=S3+S6 , 即
=
+
,
整理得:2(1﹣q9)=1﹣q3+1﹣q6 , 即1+q3=2q6 ,
又a2+a5=a1q+a1q4=a1q(1+q3)=2a1q7 , 2am=2a1qm﹣1 , 且a2+a5=2am ,
∴2a1q7=2a1qm﹣1 , 即m﹣1=7,
則m=8.
所以答案是:8
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等比數(shù)列的通項(xiàng)公式(及其變式)的相關(guān)知識(shí),掌握通項(xiàng)公式:
,以及對(duì)等差數(shù)列的性質(zhì)的理解,了解在等差數(shù)列{an}中,從第2項(xiàng)起,每一項(xiàng)是它相鄰二項(xiàng)的等差中項(xiàng);相隔等距離的項(xiàng)組成的數(shù)列是等差數(shù)列.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某群體的人均通勤時(shí)間,是指單日內(nèi)該群體成員從居住地到工作地的平均用時(shí).某地上班族
中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng)
中
的成員自駕時(shí),自駕群體的人均通勤時(shí)間是
(單位:分鐘),而公交群體的人均通勤時(shí)間不受
影響,恒為40鐘,根據(jù)上述分析結(jié)果回答下列問(wèn)題:
(1)請(qǐng)你說(shuō)明,當(dāng)
在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?
(2)求該地上班族
的人均通勤時(shí)間
的表達(dá)式;討論
的單調(diào)性,并說(shuō)明其實(shí)際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知拋物線
的焦點(diǎn)為
,準(zhǔn)線與
軸的交點(diǎn)為
,過(guò)點(diǎn)
的直線
,拋物線
相交于不同的
兩點(diǎn).
(1)若
,求直線
的方程;
(2)若點(diǎn)
在以
為直徑的圓外部,求直線
的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)x,y滿足方程x2+y2-4x+1=0.
(1)求
的最大值和最小值;
(2)求y-x的最大值和最小值;
(3)求x2+y2的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A,B,C為銳角△ABC的三個(gè)內(nèi)角,向量
=(2﹣2sinA,cosA+sinA),
=(1+sinA,cosA﹣sinA),且
⊥
.
(1)求A的大。
(2)求y=2sin2B+cos(
﹣2B)取最大值時(shí)角B的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx.
(1)求函數(shù)f(x)的圖象在x=1處的切線方程;
(2)若函數(shù)y=f(x)+
在[
,+∞)上有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)k的取值范圍;
(3)是否存在實(shí)數(shù)k,使得對(duì)任意的x∈(
,+∞),都有函數(shù)y=f(x)+
的圖象在g(x)=
的圖象的下方;若存在,請(qǐng)求出最大整數(shù)k的值,若不存在,請(qǐng)說(shuō)明理由(參考數(shù)據(jù):ln2=0.6931,
=1.6487).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=
,(a>0,b∈R)
(1)當(dāng)x≠0時(shí),求證:f(x)=f(
);
(2)若函數(shù)y=f(x),x∈[
,2]的值域?yàn)閇5,6],求f(x);
(3)在(2)條件下,討論函數(shù)g(x)=f(2x)﹣k(k∈R)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時(shí),xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱臺(tái)
中,
,
平面
,
,
,
,
分別為
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求平面
與平面
所成角(銳角)的大小.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com