已知函數(shù)
.
(Ⅰ)討論函數(shù)
的單調(diào)性;
(Ⅱ)若對任意
及
時,恒有
成立,求實數(shù)
的取值范圍.
(1)當
時,
在
上是增函數(shù);當
時,
在
上是增函數(shù),
在
上是減函數(shù).
(2)![]()
解析試題分析:解: (Ⅰ)
2分
①當
時,恒有
,則
在
上是增函數(shù); 4分
②當
時,當
時,
,則
在
上是增函數(shù);
當
時,
,則
在
上是減函數(shù) 6分
綜上,當
時,
在
上是增函數(shù);當
時,
在
上是增函數(shù),
在
上是減函數(shù). 7分
(Ⅱ)由題意知對任意
及
時,
恒有
成立,等價于![]()
因為
,所以![]()
由(Ⅰ)知:當
時,
在
上是減函數(shù)
所以
10分
所以
,即![]()
因為
,所以![]()
所以實數(shù)
的取值范圍為
12分
考點:導數(shù)的運用
點評:主要是考查了導數(shù)在研究函數(shù)中的運用,屬于基礎題。
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
,其中
為大于零的常數(shù),
,函數(shù)
的圖像與坐標軸交點處的切線為
,函數(shù)
的圖像與直線
交點處的切線為
,且
.
(I)若在閉區(qū)間
上存在
使不等式
成立,求實數(shù)
的取值范圍;
(II)對于函數(shù)
和
公共定義域內(nèi)的任意實數(shù)
,我們把
的值稱為兩函數(shù)在
處的偏差.求證:函數(shù)
和
在其公共定義域內(nèi)的所有偏差都大于2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)
千件,需另投入成本為
,當年產(chǎn)量不足80千件時,
(萬元).當年產(chǎn)量不小于80千件時,
(萬元),每件商品售價為0.05萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完.
(Ⅰ)寫出年利潤
(萬元)關(guān)于年產(chǎn)量
(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=x2+2ax+3,x∈[-4,6].
(1)當a=-2時,求f(x)的最值;
(2)求實數(shù)a的取值范圍,使y=f(x)在區(qū)間[-4,6]上是單調(diào)函數(shù);
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如果函數(shù)f(x)的定義域為
,且f(x)為增函數(shù),f(xy)=f(x)+f(y)。
(1)證明:
;
(2)已知f(3)=1,且f(a)>f(a-1)+2,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
運貨卡車以每小時
千米的速度勻速行駛130千米
(單位:千米/小時).假設汽油的價格是每升2元,而汽車每小時耗油
升,司機的工資是每小時14元.
(Ⅰ)求這次行車總費用
關(guān)于
的表達式;
(Ⅱ)當
為何值時,這次行車的總費用最低,并求出最低費用的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某商場準備在五一勞動節(jié)期間舉行促銷活動,根據(jù)市場調(diào)查,該商場決定從3種服裝商品、2種家電商品、4種日用商品中,選出3種商品進行促銷活動.
(Ⅰ)試求選出的3種商品中至少有一種日用商品的概率;
(Ⅱ)商場對選出的A商品采用的促銷方案是有獎銷售,即在該商品現(xiàn)價的基礎上將價格提高90元,同時允許顧客有3次抽獎的機會,若中獎,則每次中獎都可獲得一定數(shù)額的獎金.假設顧客每次抽獎時獲獎與否是等可能的,請問:商場應將中獎獎金數(shù)額最高定為多少元,才能使促銷方案對自己有利?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查與預測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1;B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤和投資單位:萬元).![]()
(1)分別將A、B兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(2)已知該企業(yè)已籌集到18萬元資金,并將全部投入A,B兩種產(chǎn)品的生產(chǎn).
①若平均投入生產(chǎn)兩種產(chǎn)品,可獲得多少利潤?
②問:如果你是廠長,怎樣分配這18萬元投資,才能使該企業(yè)獲得最大利潤?其最大利潤約為多少萬元?
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com