【題目】某機(jī)器生產(chǎn)商,對(duì)一次性購(gòu)買兩臺(tái)機(jī)器的客戶推出兩種超過(guò)質(zhì)保期后兩年內(nèi)的延保維修方案:
方案一:交納延保金
元,在延保的兩年內(nèi)可免費(fèi)維修
次,超過(guò)
次每次收取維修費(fèi)
元;
方案二:交納延保金
元,在延保的兩年內(nèi)可免費(fèi)維修
次,超過(guò)
次每次收取維修費(fèi)
元.
某工廠準(zhǔn)備一次性購(gòu)買兩臺(tái)這種機(jī)器,現(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)購(gòu)買哪種延保方案,為此搜集并整理了臺(tái)這種機(jī)器超過(guò)質(zhì)保期后延保兩年內(nèi)維修的次數(shù),統(tǒng)計(jì)得下表:
維修次數(shù) | 0 | 1 | 2 | 3 |
機(jī)器臺(tái)數(shù) | 20 | 10 | 40 | 30 |
以上
臺(tái)機(jī)器維修次數(shù)的頻率代替一臺(tái)機(jī)器維修次數(shù)發(fā)生的概率,記
表示這兩臺(tái)機(jī)器超過(guò)質(zhì)保期后延保兩年內(nèi)共需維修的次數(shù).
求
的分布列;
以所需延保金與維修費(fèi)用之和的期望值為決策依據(jù),該工廠選擇哪種延保方案更合算?
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析
【解析】
(1)確定
所有可能的取值為
,依次計(jì)算
每個(gè)取值所對(duì)應(yīng)的的概率,從而可列出分布列;(2)分別求解兩種方案的數(shù)學(xué)期望,根據(jù)數(shù)學(xué)期望的大小比較,確定選擇哪一種更劃算.
(1)
所有可能的取值為![]()
,
,
,
,
,
,
![]()
的分布列為
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(2)選擇延保方案一,所需費(fèi)用
元的分布列為:
|
|
|
|
|
|
|
|
|
|
|
|
(元)
選擇延保方案二,所需費(fèi)用
元的分布列為:
|
|
|
|
|
|
|
|
(元)
![]()
當(dāng)
,即
時(shí), 選擇方案二
當(dāng)
,即
時(shí),選擇方案一,方案二均可
當(dāng)
,即
時(shí),選擇方案一
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《鄭州市城市生活垃圾分類管理辦法》已經(jīng)政府常務(wù)會(huì)議審議通過(guò),自2019年12月1日起施行.垃圾分類是對(duì)垃圾收集處置傳統(tǒng)方式的改革,是對(duì)垃圾進(jìn)行有效處置的一種科學(xué)管理方法.所謂垃圾其實(shí)都是資源,當(dāng)你放錯(cuò)了位置時(shí)它才是垃圾.某企業(yè)在市科研部門的支持下進(jìn)行研究,把廚余垃圾加工處理為一種可銷售的產(chǎn)品.已知該企業(yè)每周的加工處理量最少為75噸,最多為100噸.周加工處理成本y(元)與周加工處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為
,且每加工處理一噸廚余垃圾得到的產(chǎn)品售價(jià)為16元.
(Ⅰ)該企業(yè)每周加工處理量為多少噸時(shí),才能使每噸產(chǎn)品的平均加工處理成本最低?
(Ⅱ)該企業(yè)每周能否獲利?如果獲利,求出利潤(rùn)的最大值;如果不獲利,則需要市政府至少補(bǔ)貼多少元才能使該企業(yè)不虧損?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩直線方程
與
,點(diǎn)
在
上運(yùn)動(dòng),點(diǎn)
在
上運(yùn)動(dòng),且線段
的長(zhǎng)為定值
.
(Ⅰ)求線段
的中點(diǎn)
的軌跡方程;
(Ⅱ)設(shè)直線
與點(diǎn)
的軌跡相交于
,
兩點(diǎn),
為坐標(biāo)原點(diǎn),若
,求原點(diǎn)
的直線
的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設(shè)PC與平面ABCD所成的角的正弦為
,AP=1,AD=
,求三棱錐E-ACD的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的方程為
,圓
與
軸相切于點(diǎn)
,與
軸正半軸相交于
、
兩點(diǎn),且
,如圖1.
![]()
(1)求圓
的方程;
(2)如圖1,過(guò)點(diǎn)
的直線
與橢圓
相交于
、
兩點(diǎn),求證:射線
平分
;
(3)如圖2所示,點(diǎn)
、
是橢圓
的兩個(gè)頂點(diǎn),且第三象限的動(dòng)點(diǎn)
在橢圓
上,若直線
與
軸交于點(diǎn)
,直線
與
軸交于點(diǎn)
,試問(wèn):四邊形
的面積是否為定值?若是,請(qǐng)求出這個(gè)定值,若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:
經(jīng)過(guò)點(diǎn)
,其焦點(diǎn)為F,M為拋物線上除了原點(diǎn)外的任一點(diǎn),過(guò)M的直線l與x軸、y軸分別交于A,B兩點(diǎn).
Ⅰ
求拋物線C的方程以及焦點(diǎn)坐標(biāo);
Ⅱ
若
與
的面積相等,證明直線l與拋物線C相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,
為
中點(diǎn),側(cè)棱
,底面
為直角梯形,其中
,
,
平面
,
、
分別是線段
、
上的動(dòng)點(diǎn),且
.
![]()
(1)求證:
平面
;
(2)當(dāng)三棱錐
的體積取最大值時(shí),求
到平面
的距離;
(3)在(2)的條件下求
與平面
所成角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形
的邊長(zhǎng)為2,
,
分別為
,
的中點(diǎn),以
為折痕把
折起,使點(diǎn)
到達(dá)點(diǎn)
的位置,平面
平面
.
![]()
(1)證明:
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線
的傾斜角為
,且經(jīng)過(guò)點(diǎn)
.以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線
,從原點(diǎn)O作射線交
于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足
,記點(diǎn)N的軌跡為曲線C.
(Ⅰ)求出直線
的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線
與曲線C交于P,Q兩點(diǎn),求
的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com