【題目】某中學(xué)調(diào)查了某班全部45名同學(xué)參加書法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)
參加書法社團(tuán) | 未參加書法社團(tuán) | |
參加演講社團(tuán) | 8 | 5 |
未參加演講社團(tuán) | 2 | 30 |
(1)從該班隨機(jī)選1名同學(xué),求該同學(xué)至少參加一個社團(tuán)的概率;
(2)在既參加書法社團(tuán)又參加演講社團(tuán)的8名同學(xué)中,有5名男同學(xué)A1 , A2 , A3 , A4 , A5 , 3名女同學(xué)B1 , B2 , B3 . 現(xiàn)從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人,求A1被選中且B1未被選中的概率.
【答案】
(1)解:設(shè)“至少參加一個社團(tuán)”為事件A;
從45名同學(xué)中任選一名有45種選法,∴基本事件數(shù)為45;
通過列表可知事件A的基本事件數(shù)為8+2+5=15;
這是一個古典概型,∴P(A)=
;
(2)解:從5名男同學(xué)中任選一個有5種選法,從3名女同學(xué)中任選一名有3種選法;
∴從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人的選法有5×3=15,即基本事件總數(shù)為15;
設(shè)“A1被選中,而B1未被選中”為事件B,顯然事件B包含的基本事件數(shù)為2;
這是一個古典概型,∴
.
【解析】(1)先判斷出這是一個古典概型,所以求出基本事件總數(shù),“至少參加一個社團(tuán)”事件包含的基本事件個數(shù),從而根據(jù)古典概型的概率計算公式計算即可;(2)先求基本事件總數(shù),即從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人,有多少中選法,這個可利用分步計數(shù)原理求解,再求出“A1被選中,而B1未被選中”事件包含的基本事件個數(shù),這個容易求解,然后根據(jù)古典概型的概率公式計算即可.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的各項均為正數(shù),其前n項的和為Sn , 且對任意的m,n∈N*,
都有(Sm+n+S1)2=4a2ma2n .
(1)求
的值;
(2)求證:{an}為等比數(shù)列;
(3)已知數(shù)列{cn},{dn}滿足|cn|=|dn|=an , p(p≥3)是給定的正整數(shù),數(shù)列{cn},{dn}的前p項的和分別為Tp , Rp , 且Tp=Rp , 求證:對任意正整數(shù)k(1≤k≤p),ck=dk .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,以橢圓的一個短軸端點及兩個焦點構(gòu)成的三角形的面積為
,圓C方程為
.
(1)求橢圓及圓C的方程;
(2)過原點O作直線l與圓C交于A,B兩點,若
,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖已知拋物線
的焦點坐標(biāo)為
,過
的直線交拋物線
于
兩點,直線
分別與直線
:
相交于
兩點.
![]()
(1)求拋物線
的方程;
(2)證明△ABO與△MNO的面積之比為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班50名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒與18秒之間,將測試結(jié)果按如下方式分成五組;第一組[13,14),第二組[14,15),…,第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖. ![]()
(1)若成績大于或等于14秒且小于16秒認(rèn)為良好,求該班在這次百米測試中成績良好的人數(shù);
(2)設(shè)m,n表示該班某兩位同學(xué)的百米測試成績,且已知m,n∈[13,14)∪[17,18],求事件“|m﹣n|>1”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹棵樹.乙組記錄中有一個數(shù)據(jù)模糊,無法確認(rèn),在圖中以X表示.
(注:方差
,其中
為x1 , x2 , …xn的平均數(shù))![]()
(1)如果X=8,求乙組同學(xué)植樹棵樹的平均數(shù)和方差;
(2)如果X=9,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹總棵數(shù)為19的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中有大小相同的紅、黃兩種顏色的球各1個,從中任取1只,有放回地抽取3次. 求:
(1)3只全是紅球的概率;
(2)3只顏色全相同的概率;
(3)3只顏色不全相同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量|
|=2,|
|=1,(2
﹣3
)(2
)=9.
(1)求向量
與向量
的夾角θ;
(2)求向量
在
方向上的投影.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com