【題目】如圖已知拋物線
的焦點(diǎn)坐標(biāo)為
,過
的直線交拋物線
于
兩點(diǎn),直線
分別與直線
:
相交于
兩點(diǎn).
![]()
(1)求拋物線
的方程;
(2)證明△ABO與△MNO的面積之比為定值.
【答案】(1)
;(2)證明過程詳見解析.
【解析】
試題分析:本題主要考查拋物線、直線的方程,以及直線與拋物線的位置關(guān)系,突出解析幾何的基本思想和方法的考查:如數(shù)形結(jié)合思想、坐標(biāo)化方法等.第一問,利用拋物線的標(biāo)準(zhǔn)方程,利用焦點(diǎn)坐標(biāo)求出
,代入即可;第二問,討論直線
垂直和不垂直
軸2種情況,當(dāng)直線
垂直于
軸時(shí),2個(gè)三角形相似,面積比為定值,當(dāng)直線
不垂直于
軸時(shí),設(shè)出直線
的方程,設(shè)出
四個(gè)點(diǎn)坐標(biāo),利用直線
與拋物線相交列出方程組,消參得到方程,利用兩根之積得
為定值,而面積比值與
有關(guān),所以也為定值.
試題解析:(1)由焦點(diǎn)坐標(biāo)為
可知![]()
所以
,所以拋物線
的方程為
5分
(2)當(dāng)直線垂直于
軸時(shí),
與
相似,
所以
, 7分
當(dāng)直線與
軸不垂直時(shí),設(shè)直線AB方程為
,
設(shè)
,,
,
,
解
整理得
, 9分
所以
, 10分
,
綜上
12分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項(xiàng)均大于1的數(shù)列{an}滿足:a1=
,an+1=
(an+
),(n∈N*),bn=log5
.
(1)證明{bn}為等比數(shù)列,并求{bn}通項(xiàng)公式;
(2)若cn=
,Tn為{cn}的前n項(xiàng)和,求證:Tn<6.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量
=(
sinx,sinx),
=(cosx,sinx),x∈[0,
]
(1)若|
|=|
|,求x的值;
(2)設(shè)函數(shù)f(x)=
,求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
的參數(shù)方程為
(
為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立的極坐標(biāo)系中,圓
的極坐標(biāo)方程為
.
(1)求直線
被圓
截得的弦長(zhǎng);
(2)若點(diǎn)
的坐標(biāo)為
,直線
與圓
交于
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是遞增的等比數(shù)列,且a1+a4=9,a2a3=8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,bn=
,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1+3a2+32a3+…+3n﹣1an=
,n∈N+ .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)anbn=n,求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)調(diào)查了某班全部45名同學(xué)參加書法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)
參加書法社團(tuán) | 未參加書法社團(tuán) | |
參加演講社團(tuán) | 8 | 5 |
未參加演講社團(tuán) | 2 | 30 |
(1)從該班隨機(jī)選1名同學(xué),求該同學(xué)至少參加一個(gè)社團(tuán)的概率;
(2)在既參加書法社團(tuán)又參加演講社團(tuán)的8名同學(xué)中,有5名男同學(xué)A1 , A2 , A3 , A4 , A5 , 3名女同學(xué)B1 , B2 , B3 . 現(xiàn)從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人,求A1被選中且B1未被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對(duì)于任意的x∈[﹣1,0],關(guān)于x的不等式3x2+2ax+b≤0恒成立,則a2+b2﹣2的最小值為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知平面直角坐標(biāo)系
,以
為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,
點(diǎn)的極坐標(biāo)為
,曲線
的參數(shù)方程為
(
為參數(shù)).
(1)寫出點(diǎn)
的直角坐標(biāo)及曲線
的直角坐標(biāo)方程;
(2)若
為曲線
上的動(dòng)點(diǎn),求
的中點(diǎn)
到直線
:
的距離的最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com