欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow$=(0,2).
(1)若向量λ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$平行,求實數(shù)λ的值;
(2)若向量λ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角為$\frac{3π}{4}$,求實數(shù)λ的值.

分析 (1)由題意和向量運算可得λ$\overrightarrow{a}$+$\overrightarrow$=(λ,λ+2),$\overrightarrow{a}$-$\overrightarrow$=(1,-1),由平行關(guān)系可得λ的方程,解方程可得;
(2)由向量的夾角公式可得λ的方程,解方程可得.

解答 解:(1)∵向量$\overrightarrow{a}$=(1,1),$\overrightarrow$=(0,2).
∴λ$\overrightarrow{a}$+$\overrightarrow$=(λ,λ+2),$\overrightarrow{a}$-$\overrightarrow$=(1,-1),
∵向量λ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$平行,
∴-λ=λ+2,解方程可得λ的值為-1;
(2)由(1)可得λ$\overrightarrow{a}$+$\overrightarrow$=(λ,λ+2),$\overrightarrow{a}$-$\overrightarrow$=(1,-1),
∵向量λ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角為$\frac{3π}{4}$,
∴λ-λ-2=$\sqrt{{λ}^{2}+(λ+2)^{2}}$•$\sqrt{{1}^{2}+(-1)^{2}}$•cos$\frac{3π}{4}$,
解方程可得λ=0或λ=-2

點評 本題考查數(shù)量積與向量的夾角,涉及向量的平行關(guān)系,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}滿足:${a_1}=2,{a_{n+1}}+{a_n}=9×{2^{n-1}}$.
(1)記${b_n}={a_n}-3×{2^{n-1}}$,求證:數(shù)列{bn}為等比數(shù)列;
(2)求數(shù)列{nan}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知不等式-x2-x+6>0,則該不等式的解集是( 。
A.(-2,3)B.(-3,2)C.(-∞,-3)∪(2,+∞)D.(-∞,-2)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)實數(shù)x、y滿足$\left\{\begin{array}{l}{(x-1)^{2015}+2015x+sin(x-1)=2016}\\{(y-1)^{2015}+2015y+sin(y-1)=2014}\end{array}\right.$,則x+y=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.探究:要使下列事實成立,非零向量$\overrightarrow{a}$,$\overrightarrow$應(yīng)分別滿足什么條件?
(1)$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$共線;
(2)$\overrightarrow{a}$+$\overrightarrow$平分$\overrightarrow{a}$,$\overrightarrow$b所成的角;
(3)|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$$-\overrightarrow$|;
(4)|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|;
(5)|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知f(x)=$\left\{\begin{array}{l}{ax^2+x,x>0}\\{-2x,x≤0}\end{array}\right.$,若不等式f(x-2)≥f(x)對一切x∈R恒成立,則a的最小值為( 。
A.-$\frac{7}{16}$B.-$\frac{9}{16}$C.-$\frac{1}{2}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.按下列要求從12人中選出5人參加某項公益動.分別有多少種不同的選法?
(1)甲、乙兩人都不入選.
(2)甲、乙兩人至多1人入選.
(3)甲、乙、丙3人至少有1人入選.
(4)甲、乙、丙3人至多有2人入選.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知P(x0,y0)(x0≠±a)是橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上一點,M,N分別是橢圓E的左、右頂點,直線PM、PN的斜率之積為-$\frac{1}{4}$.
(1)求橢圓E的離心率;
(2)過橢圓E的左焦點且斜率為1的直線交橢圓E于A,B兩點,O為坐標(biāo)原點,點C為橢圓E上一點,且滿足$\overrightarrow{OC}$=$λ\overrightarrow{OA}$$+\overrightarrow{OB}$(λ≠0),求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.填空題
(1)sin240°=$-\frac{\sqrt{3}}{2}$,cos120°=$-\frac{1}{2}$,tan240°=$\sqrt{3}$.
(2)sin225°=$\frac{\sqrt{2}}{2}$,cos135°=$-\frac{\sqrt{2}}{2}$,tan(-330°)=$-\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案