【題目】如圖,
,
,
是同一平面內(nèi)的三條平行直線,
與
之間的距離是1,
與
之間的距離是2,三角形
的三個頂點(diǎn)分別在
,
,
上.
![]()
(1)若
為正三角形,求其邊長;
(2)若
是以B為直角頂點(diǎn)的直角三角形,求其面積的最小值.
【答案】(1)
(2)2
【解析】
(1)根據(jù)題意作高
,
,
.根據(jù)等邊三角形及直角三角形的性質(zhì),設(shè)
,則
,求出
,
根據(jù)三角形相似根據(jù)其相似比可求出
,
的長,再根據(jù)勾股定理即可解答.
(2)過點(diǎn)B作
,交
于M,交
于N,設(shè)
,
,由
,得
,則
,
,
,由此利用均值不等式能求出
面積的最小值.
解:(1)作高
,
,
(如圖),
設(shè)
,則
,
于是
,
,
∵
,
,
∴
,
∴
,即
,∴
,
∴
,
∵
,∴
,
∴
.
∴
的邊長為
.
(2)過點(diǎn)B作
,交
于M,交
于N,設(shè)
,
,
則
,∴
,即
,∴
,
,
,
∵
是以B為直角頂點(diǎn)的直角三角形,
∴![]()
![]()
當(dāng)且僅當(dāng)
,即
,
時,
面積取最小值2.
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)中僅有一人申請了北京大學(xué)的自主招生考試,當(dāng)他們被問到誰申請了北京大學(xué)的自主招生考試時,甲說:“丙或丁申請了”;乙說:“丙申請了”;丙說:“甲和丁都沒有申請”;丁說:“乙申請了”,如果這四位同學(xué)中只有兩人說的是對的,那么申請了北京大學(xué)的自主招生考試的同學(xué)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電影院共有1000個座位,票價不分等次,根據(jù)影院的經(jīng)營經(jīng)驗,當(dāng)每張票價不超過10元時,票可全售出;當(dāng)每張票價高于10元時,每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院定一個合適的票價,需符合的基本條件是:①為了方便找零和算賬,票價定為1元的整數(shù)倍;②電影院放一場電影的成本費(fèi)用支出為5750元,票房的收入必須高于成本支出,用x(元)表示每張票價,用y(元)表示該影院放映一場的凈收入(除去成本費(fèi)用支出后的收入)
問:
(1)把y表示為x的函數(shù),并求其定義域;
(2)試問在符合基本條件的前提下,票價定為多少時,放映一場的凈收人最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,過橢圓的焦點(diǎn)且與長軸垂直的弦長為1.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M為橢圓上第一象限內(nèi)一動點(diǎn),A,B分別為橢圓的左頂點(diǎn)和下頂點(diǎn),直線MB與x軸交于點(diǎn)C,直線MA與y軸交于點(diǎn)D,求證:四邊形ABCD的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
是定義在實數(shù)集R上的奇函數(shù),且在區(qū)間
上是單調(diào)遞增,若
,則
的取值范圍為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分16分)設(shè)數(shù)列
的前n項和為
,數(shù)列
滿足:
,且數(shù)列
的前
n項和為
.
(1) 求
的值;
(2) 求證:數(shù)列
是等比數(shù)列;
(3) 抽去數(shù)列
中的第1項,第4項,第7項,……,第3n-2項,……余下的項順序不變,組成一個新數(shù)列
,若
的前n項和為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列滿足4Sn=an2+2an+1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點(diǎn)
到點(diǎn)
的距離,等于它到直線
的距離.
(1)求點(diǎn)
的軌跡
的方程;
(2)過點(diǎn)
任意作互相垂直的兩條直線
,分別交曲線
于點(diǎn)
和
.
設(shè)線段
,
的中點(diǎn)分別為
,求證:直線
恒過一個定點(diǎn);
(3)在(2)的條件下,求
面積的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
)且函數(shù)
是奇函數(shù).
(1)求
的值;
(2)是否存在這樣的實數(shù)
,使
對所有的
均成立?若存在,求出適合條件的實數(shù)
的值或范圍;若不存在,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com