【題目】已知函數(shù)
.
(1)求函數(shù)
在點(diǎn)
處的切線方程;
(2)求函數(shù)
在
上的值域;
(3)若存在
,使得
成立,求
的最大值.(其中自然常數(shù)
)
【答案】(1)
(2)
(3)
的最大值為6.
【解析】
)(1)對
求導(dǎo)得到
,然后代入切點(diǎn)橫坐標(biāo),得到斜率,點(diǎn)斜式寫出切線方程,整理得答案;(2)利用導(dǎo)數(shù)判斷出
的單調(diào)性,根據(jù)單調(diào)性求出其最小值,并比較在兩個端點(diǎn)時的函數(shù)值,得到最大值,從而得到答案;(3)由(2)可得
,要使
成立,且
的值最大,則
,
…
的值應(yīng)最小,即
,
,從而得到
,從而得到
的最大值為
.
解:(1)
,
∴
,又
,
∴
,即
為所求切線的方程.
(2)![]()
令
,得
(舍去負(fù)根)
所以
時,
,
單調(diào)遞減,
時,
,
單調(diào)遞增.
故
,
又因?yàn)?/span>
,
,
故
,
故
時,
.
(3)由(2)知,
時,
.
所以有![]()
而要使
成立,且
的值最大,
則
,
…
每個的函數(shù)值應(yīng)最小,
即,即
,
,
從而得到
,
所以
,
所以
的最大值為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,
為等邊三角形,![]()
![]()
(1)若點(diǎn)
分別是線段
的中點(diǎn),求證:平面
平面
;
(2)若二面角
為直二面角,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國上是世界嚴(yán)重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標(biāo)準(zhǔn)
(噸),用水量不超過
的部分按平價(jià)收費(fèi),超過
的部分按議價(jià)收費(fèi),為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照
,
,…,
分成9組,制成了如圖所示的頻率分布直方圖.
![]()
(Ⅰ)求直方圖中
的值;
(Ⅱ)已知該市有80萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)若該市政府希望使
的居民每月的用水量不超過標(biāo)準(zhǔn)
(噸),估計(jì)
的值,并說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
過點(diǎn)
,
是該橢圓的左、右焦點(diǎn),
是上頂點(diǎn),且
是等腰直角三角形.
(1)求
的方程;
(2)已知
是坐標(biāo)原點(diǎn),直線
與橢圓
相交于
兩點(diǎn),點(diǎn)
在
上且滿足四邊形
是一個平行四邊形,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
在區(qū)間
上是增函數(shù).
(1)求實(shí)數(shù)
的值組成的集合
;
(2)設(shè)關(guān)于
的方程
的兩個非零實(shí)根為
、
.試問:是否存在實(shí)數(shù)
,使得不等式
對任意
及
恒成立?若存在,求
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某度假酒店為了解會員對酒店的滿意度,從中抽取50名會員進(jìn)行調(diào)查,把會員對酒店的“住宿滿意度”與“餐飲滿意度”都分為五個評分標(biāo)準(zhǔn):1分(很不滿意);2分(不滿意);3分(一般);4分(滿意);5分(很滿意).其統(tǒng)計(jì)結(jié)果如下表(住宿滿意度為
,餐飲滿意度為
)
![]()
(1)求“住宿滿意度”分?jǐn)?shù)的平均數(shù);
(2)求“住宿滿意度”為3分時的5個“餐飲滿意度”人數(shù)的方差;
(3)為提高對酒店的滿意度,現(xiàn)從
且
的會員中隨機(jī)抽取2人征求意見,求至少有1人的“住宿滿意度”為2的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻率分布直方圖:
![]()
(1)求這100件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)
和樣本方差
(同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表);
(2)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值
服從正態(tài)分布
,其中
近似為樣本平均數(shù)
,
近似為樣本方差
。
(i)若某用戶從該企業(yè)購買了10件這種產(chǎn)品,記
表示這10件產(chǎn)品中質(zhì)量指標(biāo)值位于(187.4,225.2)的產(chǎn)品件數(shù),求
;
(ii)一天內(nèi)抽取的產(chǎn)品中,若出現(xiàn)了質(zhì)量指標(biāo)值在
之外的產(chǎn)品,就認(rèn)為這一天的生產(chǎn)過程中可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查下。下面的莖葉圖是檢驗(yàn)員在一天內(nèi)抽取的15個產(chǎn)品的質(zhì)量指標(biāo)值,根據(jù)近似值判斷是否需要對當(dāng)天的生產(chǎn)過程進(jìn)行檢查。
![]()
附:
,
,
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】眾所周知的“太極圖”,其形狀如對稱的陰陽兩魚互抱在一起,因而也被稱為“陰陽魚太極圖”.如圖是放在平面直角坐標(biāo)系中的“太極圖”,整個圖形是一個圓形,其中黑色陰影區(qū)域在
軸右側(cè)部分的邊界為一個半圓.給出以下命題:①在太極圖中隨機(jī)取一點(diǎn),此點(diǎn)取自黑色陰影部分的概率是
;②當(dāng)
時,直線
與黑色陰影部分有公共點(diǎn);③當(dāng)
時,直線
與黑色陰影部分有兩個公共點(diǎn).其中所有正確結(jié)論的序號是( )
![]()
A.①B.①②C.①③D.①②③
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com